Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чем измеряют тепловое действие тока

Чем измеряют тепловое действие тока

§ 39. ЭЛЕКТРИЧЕСКИЙ ТОК И ЕГО ДЕЙСТВИЯ. СИЛА ТОКА.

Заряженные частицы, двигаясь по проводнику, могут нагревать его, намагничивать и изменять его химический состав.

Упорядоченное движение заряженных частиц в проводнике называют электрическим током. Кратковременный электрический ток, например, возникает в металлическом проводнике М, соединяющем два разноименно заряженных тела, А и Б (рис. 39а), когда под действием электрического поля его свободные электроны перемещаются от тела Б к А. Однако поток электронов между телами Б и А будет уменьшать заряды этих тел, и в конце концов, они станут незаряженными, и поле, вызвавшее электрический ток, исчезнет.

Электрический ток является результатом направленного движения свободных зарядов (электронов или ионов) в проводнике. В результате хаотичного (теплового) движения этих заряженных частиц направленного переноса заряда не происходит, а значит, электрический ток не возникает. Чтобы каждый раз не упоминать, какие частицы – ионы или электроны, переносят заряд в электрическом токе, за направление электрического тока условно принимается то направление, в котором бы двигались под действием данного электрического поля положительно заряженные частицы (см. голубую стрелку на рис. 39а).

Прохождение электрического тока сопровождается многочисленными явлениями или действиями, по которым можно судить о его существовании. По характеру воздействия эти явления можно разделить на тепловые, магнитные и химические:

(1) Электрический ток нагревает проводник, по которому он протекает (тепловое действие). При этом некоторые проводники, например, вольфрамовая спираль осветительной лампы нагревается так сильно (до 2500 о С), что начинает даже светиться. Другие проводники, например, медные провода, по которым ток течёт к лампе, практически не нагреваются. Тепловое действие тока не зависит от направления тока, а определяется его величиной и свойствами проводника.

(2) Электрический ток действует на намагниченные тела, например, поворачивает магнитную стрелку, первоначально ориентированную вдоль проводника с током, перпендикулярно направлению тока (магнитное действие). Следует отметить, что магнитное действие тока зависит от величины тока и его направления и не зависит от вещества, из которого сделан проводник. Поэтому считают, что магнитное действие электрического тока – это его наиболее характерная черта, которая проявляется во всех проводниках.

(3) Электрический ток, проходя через растворы или расплавы электролитов, может разлагать их на составные части в результате процесса, называемого электролизом (химическое действие). Например, при пропускании тока через воду она разлагается на водород и кислород, и пузырьки этих газов образуются на электродах, между которыми пропускают электрический ток. В металлических проводниках электрический ток не вызывает никаких химических изменений.

Чем больше электрический ток, тем большее действие на проводник он оказывает. Чтобы охарактеризовать величину тока, предположим, что проводник имеет форму цилиндра с поперечным сечением S (см. рис. 39б). Силой тока I называют отношение заряда D q , переносимого этим током через поперечное сечение проводника за интервал времени D t , к величине этого интервала:

Единицей силы тока в СИ является ампер (А). При силе тока в 1 А через поперечное сечение проводника за 1 с проходит заряд в 1 Кл. Силу тока измеряют с помощью амперметров, в устройстве которых использовано магнитное действие электрического тока.

Читайте так же:
Количество теплоты при возрастании тока

Если сила тока не изменяется со временем, то такой электрический ток называют постоянным. Условием существования постоянного электрического тока является наличие неизменного электрического поля в проводнике, или, другими словами, постоянного напряжения между концами проводника. Чтобы электрический ток через металлический проводник не прекращался, необходимо иметь устройство, перемещающее свободные электроны, пришедшие из Б в А, обратно в Б (см. рис. 39в). Такое устройство называют источником тока. Источник тока перемещает заряды на участке АБ против действующих на них электростатических сил.

Вопросы для повторения:

· Что такое электрический ток, и какое направление он имеет?

· Какие действия может оказывать электрический ток?

· Почему магнитное действие тока считают его самым характерным действием?

· Что называют силой тока, и в каких единицах её измеряют?

Рис. 39. (а) – кратковременный электрический ток между заряженными телами; (б) – к определению силы тока; (в) –п оддержание постоянного тока в металлическом проводнике М, соединяющем два заряженных тела.

Чем измеряют тепловое действие тока

Электрический ток. Сила тока

Содержание

Электрический ток

Электрическим током называется упорядоченное направленное движение электрически заряженных частиц.

Мы с вами знаем, что заряда без частицы не может быть. Поэтому, направленное упорядоченное движение и будет у нас представлять не что иное, как электрический ток.

Стоит отметить, что электрический ток — это не просто движение направленное и упорядоченное, надо себе достаточно точно представлять, что же это такое. И в таком случае можно сказать следующее, что движение зарядов, конечно же может быть хаотично, беспорядочно, но на это хаотично и беспорядочное движение, накладывается еще одно движение, которое определяет смещение всех частиц по определенному направлению.

Вот такое движение и надо себе представлять, как электрический ток. То есть заряженные частицы движутся беспорядочно, но в этом движении есть смещение частиц в конкретном направлении. И как раз такое движение и будет не чем иным, как электрическим током.

Разумеется, нужно отметить тот факт, что частицы могут быть заряжены по-разному. Это могут быть и отрицательно заряженные частицы. Чаще, конечно, это электроны, а могут быть и положительно заряженные частицы — ионы. Но, конечно же, бывают и отрицательно заряженные ионы, которые тоже способны определять электрический ток.

Кроме этого следует сказать еще о том, что когда мы с вами какое-либо тело зарядим, то есть сообщим заряд этому телу, и это тело будет двигаться у нас в пространстве, то и такое движение можно назвать электрическим током.

Другими словами, если например, движется заряженный шарик, то этот шарик, конечно же, обладает зарядом, и соответственно он будет определять электрический ток.

Давайте рассмотрим простейший случай электрического тока. Этот электрический ток мы называем постоянным, то есть, когда электрические заряды не меняют свое направление движения и передвигаются с постоянной скоростью и при этом ток своего значения не изменяет, то, следовательно, этот ток является постоянным.

Читайте так же:
Что такое тепловое действие тока примеры

Сила тока

Для характеристики электрического тока применяют такую величину, как сила тока. Обозначают эту силу большой латинской буквой – I, а измеряют силу тока в амперах.

Однако для определения понятия «сила тока», нам нужно рассмотреть действия силы тока. Но, сам электрический ток мы с вами видеть не имеем возможности, а можем говорить о нем, когда наблюдаем его в действии.

Тепловое действие

В первую очередь, понятное дело, это действие тепловое. Вот тепловое действие тока и стоит на первом месте, потому что встречается чаще других. Что же это за такое действие? Выясняется, что если электрический ток проходит по проводнику, то проводники нагреваются. Вот это тепловое действие лежит в основе очень многих электронагревательных приборов.

Химические действия

На втором месте стоит, так называемое химическое действие. Оказывается, если ток протекает по некоторым проводникам, то меняется их химический состав и такое действие называют химическим действием.

Магнитное действие

И наконец-то третье действие, которое очень часто нам встречается – это магнитное действие электрического тока. Вот именно магнитное действие и положено в основу измерения определения того, что же такое сила тока.

Конечно же, силу тока определяют заряды, которые проходят или протекают через поперечное сечение проводника за единицу времени. Следовательно, сила тока будет определяться отношением количества электричества, которое прошло через поперечное сечение за единицу времени или за интервал времени.

Сила тока, как мы уже говорили, обозначается латинской буквой I и определяется она следующим образом, как отношение количества электричества, которое прошло через поперечное сечение проводника к промежутку времени, за которое этот заряд прошел через сечение проводника.

А сила тока измеряется в амперах. Обозначение Ампера появилось в честь физика Андре Мари Ампера из Франции, который достаточно много посвятил в своих работах изучению вопросов об электрическом токе. И еще важно знать, что 1 ампер является отношением количества электричества в один Кулон, прошедшего через сечение данного проводника за одну секунду.

Следует понимать, что электрический ток в таком случае может характеризоваться скоростью движения электрического заряда. Сила тока как раз и будет той самой характеристикой, которая определяет быстроту прохождения заряда через поперечное сечение данного проводника.

Прибор для измерения тока

Прибор для измерения силы тока называется амперметр. На данном приборе всегда ставится символ в виде буквы «А», которая говорит нам о том, что назначение этого прибора — измерение силы тока. На схеме амперметр, обозначается кружочком, в котором внутри ставится буква «А». А вот данные две черты обозначают соединительные провода, при помощи которых амперметр подключают в электрическую цепь. Амперметр подключается в цепь последовательно, так чтобы весь электрический ток прошел через этот прибор.

Электрический ток можно сравнить с движением воды по трубе. А вот амперметр в таком случае, будет прибором, который измеряет скорость течения этой воды по трубе.

Интересные факты

Каждый из нас не единожды наблюдал за птицами, беззаботно сидящими на электрических проводах. А знаете, почему сидящие на проводах пернатые не гибнут? Оказывается, что по их телу проходит ничтожно малый ток. Но если, же она коснется какого-либо заземленного предмета, то ее моментально убьет током.

Читайте так же:
Оборудование для наблюдение теплового действия электрического тока

А известно ли вам, что многие животные имеют такую способность, как вырабатывать электрический ток. Обороняясь от врагов, электрический угорь способен выработать электрический ток, который имеет напряжение до 500В.

Между прочим, тело человека также способно вырабатывать электроэнергию, в частности на такой подвиг способна сердечная мышца. Благодаря таким сердечным способностям, с помощью электрокардиограммы, можно измерить ритм биения сердца.

Также интересным явлением из области электричества, является то, что при попадании в человека разряда молнии, у него на теле появляется довольно таки особенный рисунок, который еще называют фигурой Лихтенберга.

А вот в период, когда человек только начинал заниматься исследованиями электрических явлений, но при этом еще даже не знал о существовании специальных приборов, он ради науки приносил в жертву свое здоровье, а иногда и жизнь. Так однажды ученый-физик В. Петров, который исследовал явление электрической дуги, пошел на такую жертву и срезал слой кожи на пальцах, чтобы была возможность лучше чувствовать слабые токи.

Знаете ли вы, что древние римляне додумались лечить болезни с помощью электричества. Они нашли выход, как можно избавиться от головной боли. Для этих целей, на голову больного накладывали электрического угря. Конечно, сказать об эффективности такого лечения очень трудно, так как больной после такой процедуры уверял, что все прошло, или же боялся признаться, что у него болит голова.

Тепловое действие тока. Электрические единицы

Проходя по проводнику, электрический ток нагревает его. Нагревание тем больше, чем больше сила тока, чем больше сопротивление материала проводника и чем тоньше проводник. При сильном нагревании проводник может расплавиться и перегореть. На тепловом действии тока основано устройство электрических ламп накаливания. Чтобы накаленная током проволочка не расплавлялась и не сгорала, ее делают из очень тугоплавкого металла (вольфрама) и помещают в стеклянный сосуд, из которого выкачивается воздух. Нагревание проводника током вызывает затрату электроэнергии. Количество протекающей по трубам воды мы можем измерить ведрами, кубическими метрами; напор измеряется метрами высоты, с какой идет вода. Точно так же существует необходимость измерять и электрическую силу тока, напряжение и пр. Напряжение измеряется вольтами, сила тока — амперами (А или а), у сопротивления — Омами (Ом). Эти единицы измерения электрических величин подобраны таким образом, что при напряжении в 1 вольт по проводнику пойдет ток, равный 1 амперу, если сопротивление проводника равно 1 Ому.

На практике часто приходится встречаться с миллиамперами (мА). Это мелкая единица измерения тока, слабого тока; миллиампер — это одна тысячная часть ампера; в ампере, значит, тысяча миллиампер. В радиоприемниках и усилителях приходится пользоваться очень большими сопротивлениями, в один и больше миллионов Омов. Сопротивление в 1 миллион Омов носит название мегом (М или МОм). Электрическая мощность измеряется ваттами (W или Вт). Ватты мы получим, если помножим вольты напряжения нашего источника тока на его силу — на амперы. Например, если наш источник тока имеет напряжение 2 вольта и дает в проводнике, который он «питает», силу тока в 1 ампер, то она развивает мощность (2 вольта х 1 ампер), равную 2 ваттам. Другая единица мощности, лошадиная сила, имеет 736 ватт; в электротехнике более употребительна единица мощности — киловатт (kw или кет), равный 10000 ватт (кило значит тысяча). Израсходованную энергию измеряют ватт-часами, или киловатт-часами. Если мы расходуем мощность в 0,5 киловатта в течение 2 часов, то мы истратили энергию, равную 0,5 х 2 = 1 киловатт-часу; тот же 1 киловатт-час получится, если расходовать 1 киловатт в течение часа, или 4 киловатта в течение 7 4 часа и т. д., т. е. мощность в киловаттах или ваттах нужно умножить на время в часах, чтобы получить киловатт-часы или ватт-часы.

Читайте так же:
Автоматический выключатель с регулир тепловой защитой abb ms116

При работе с аккумуляторами и элементами говорят не об их мощности и энергии, а о силе тока разрядной (или зарядной) и о емкости, измеряемой в ампер-часах, подобно тому, как измеряется энергия в киловатт-часах. Измерение всех этих величин в электротехнике производится особыми приборами, которые носят названия, оканчивающиеся словом “метр”, что значит “измеритель”. Так, например, напряжение электрического тока, которое считается в вольтах, измеряют вольтметром, силу тока в амперах — амперметром, сопротивление электрических проводников в омах — омметром, а мощность тока — ватт-метром. Об устройстве и работе этих приборов можно узнать из книг по электротехнике или у руководителя практических занятий в кружке.

Обратите внимание: не любой стиль интерьера подойдет к каждому помещению. Планировка, высота потолков, расположение оконных и дверных проёмов, размер помещение — это основные факторы, от которых будет зависеть будущий дизайн интерьера, тут важно обращать внимание не только на пожелания заказчика. Перед началом работ подготавливается подробный проект и смета.

Что такое напряжение?

Напряжение — это давление от источника питания электрической цепи, которое обеспечивает движение заряженных электронов (ток) через проводящий контур, позволяя им выполнять полезную работу (например, обеспечивать свечение лампочки).

В кратком виде: напряжение = давление, оно измеряется в вольтах (В). Эта единица измерения названа в честь итальянского физика Алессандро Вольта (1745–1827 гг.), который изобрел вольтов столб, ставший предшественником современной бытовой батареи.

Ранее напряжение называлось электродвижущей силой (эдс). Поэтому в ряде уравнений, например в законе Ома, напряжение обозначается символом E.

Пример напряжения в простой цепи постоянного тока:

  1. В этой цепи постоянного тока переключатель замкнут (переведен во включенное положение).
  2. В источнике питания образуется напряжение («разность потенциалов» между двумя полюсами батареи), создавая давление, под действием которого поток электронов движется к отрицательной клемме батареи.
  3. Ток достигает лампочки, и лампочка начинает светиться.
  4. Ток возвращается в источник питания.

Различают напряжение переменного тока и постоянного тока. Отличия заключаются в следующем:

Напряжение переменного тока (на цифровом мультиметре обозначается символом ):

  • распространяется равномерными синусоидальными волнами, как показано ниже:
  • меняет направление с регулярными интервалами.
  • обычно вырабатывается электростанциями с помощью генераторов, которые преобразуют механическую энергию, производимую вращением под действием протекающей воды, пара, ветра или тепла, в электрическую энергию.
  • более распространено, чем напряжение постоянного тока. Электростанции подают напряжение переменного тока в организации и дома, где большинство устройств работает на напряжении переменного тока.
  • Основные источники питания различаются в зависимости от страны. Например, в США напряжение источников равно 120 В.
  • Некоторые бытовые устройства, например телевизоры и компьютеры, используют напряжение постоянного тока. Они используют выпрямители (например, массивный блок шнуре портативного компьютера), которые преобразовывают напряжение переменного тока в напряжение постоянного тока, а также переменный ток — в постоянный.
Читайте так же:
Кратность тока короткого замыкания теплового расцепителя

Генераторы преобразуют энергию вращательного движения в электрическую. Вращательное движение обычно возникает под воздействием текущей воды (гидроэлектрическая энергия) или пара, образующегося из воды при нагреве с помощью энергии газа, нефти, угля или ядерной энергии.

Напряжение постоянного тока (на цифровом мультиметре обозначается символами и ):

  • распространяется по прямой и только в одном направлении.
  • обычно вырабатывается источниками накапливаемой энергии, например батареями.
  • на источниках напряжения постоянного тока есть положительная и отрицательная клеммы. Клеммы определяют полярность в цепи. По полярности можно определить, является ли данная цепь цепью постоянного или переменного тока.
  • обычно используется в портативном оборудовании с питанием от батареи (фонарики, камеры).

Что такое разница потенциалов?

Напряжение и термин «разность потенциалов» зачастую взаимозаменяемы. Разность потенциалов правильнее назвать разностью потенциальной энергии между двумя точками цепи. Величина разности (выраженная в вольтах) определяет величину потенциальной энергии, доступной для перемещения электронов из одной точки в другую. От этой величины зависит, какая работа потенциально может быть совершена в цепи.

Например, бытовая щелочная батарея типа AA обеспечивает напряжение 1,5 В. Обычные бытовые розетки обеспечивают напряжение 120 В. Чем выше напряжение в цепи, тем выше способность приводить в движение большое количество электронов и выполнять работу.

Напряжение/разность потенциалов можно сравнить с водой в резервуаре. Чем крупнее резервуар и чем больше его высота (и, следовательно, возможная развиваемая скорость), тем сильнее будет способность воды оказать воздействие при открытии клапана, когда вода начинает течь, подобно электронам.

Почему нужно измерять напряжение

В большинстве случаев при проведении проверки технические специалисты знают, как должна работать цепь.

Цепи используются для передачи энергии на нагрузку: от небольших устройств и бытовой техники до промышленных двигателей. На нагрузках часто есть паспортная табличка, на которой указаны эталонные значения стандартных электрических параметров, в том числе напряжения и силы тока. Вместо паспортной таблички некоторые производители предоставляют подробную схему (техническую схему) всех контуров нагрузки. Стандартные значения могут содержаться в руководствах.

Благодаря этим значениям технический специалист понимает, какие показания следует ожидать при нормальной работе нагрузки. Показания цифрового мультиметра позволяют объективно определять отклонения от нормы. Однако и в этом случае технический специалист должен руководствоваться знаниями и опытом для определения причин, вызывающих подобные отклонения.

Ссылка: Digital Multimeter Principles by Glen A. Mazur, American Technical Publishers.

голоса
Рейтинг статьи
Ссылка на основную публикацию