Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое интегральный стабилизатор тока

СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ НА ИНТЕГРАЛЬНЫХ МИКРОСХЕМАХ

    Иннокентий Лупандин 4 лет назад Просмотров:

1 СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ НА ИНТЕГРАЛЬНЫХ МИКРОСХЕМАХ Введение В данной электронной книге приведены сведения об отечественных интегральных микросхемах компенсационных стабилизаторов постоянного напряжения с непрерывным регулированием, применяемых в источниках вторичного электропитания. Предлагаемая книга является как справочной, так и учебно-методическим пособием по применению и расчету подобных стабилизаторов напряжения. С другой стороны ее, по-видимому, нельзя считать неким эквивалентом традиционным «бумажным» учебникам и учебным пособиям. При работе над настоящей электронной книгой преследовалась цель подготовить такое учебное пособие, которое включало бы в себя информацию об интегральных микросхемах стабилизаторов постоянного напряжения, выпускаемых отечественной промышленностью. Номенклатура таких микросхем обширна, поэтому в первой главе приводится их классификация. Здесь же приводятся их структурные схемы и принципиальная схема наиболее простой микросхемы, а также их принципы работы. Во второй главе приведены параметры микросхем, выпускаемых отечественной промышленностью. В третьей главе дана методика построения и расчета стабилизаторов напряжения. В дальнейшем предполагается дополнять книгу сведениями о новых микросхемах и особенностях их применения. Настоящее пособие адресовано студентам радиотехнических специальностей всех форм обучения, изучающих источники вторичного электропитания. При работе над пособием использовался многолетний опыт преподавания курсов «Электротехнические устройства радиосистем», «Электропреобразовательные устройства», «Электропитание устройств и систем связи» студентам различных специальностей на кафедре » Радиотехнические системы» Красноярского государственного технического университета. Поскольку эта книга является учебно-методическим и справочным пособием, то здесь неизбежна сознательная или случайная компиляция, касающаяся общих положений в той же мере, в какой это характерно и для ряда традиционных учебников и пособий. Вместе с тем подбор материала в книге несколько отличается от традиционных учебников и учебных пособий. Отличие связано в основном с возможностью обновления частично устаревшей информации или внесением сведений о новых интегральных микросхемах, их параметрах и условиях их применения. Несомненным преимуществом электронной книги являются цветные иллюстрации, возможность быстрого поиска требуемой информации и упоминавшаяся ранее возможность оперативного переиздания, внесения изменений и дополнений. Если у Вас при знакомстве с данной книгой появятся замечания или предложения по ее улучшению, направляйте их автору: o Адрес: , г.красноярск, ул.киренского-26, КГТУ, кафедра «Радиотехнические системы», доценту Лисовской Наталье Николаевне o Телефон: (8-3912) o

2 1. ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ СТАБИЛИЗАТОРОВ НАПРЯЖЕНИЯ С НЕПРЕРЫВНЫМ РЕГУЛИРОВАНИЕМ. Первые интегральные микросхемы компенсационных стабилизаторов напряжения с непрерывным регулированием появились в 1967 году. В настоящее время в нашей стране и за рубежом выпускаются и применяются интегральные микросхемы стабилизаторов напряжения (ИСМ) на различные выходные напряжения и токи. Эти микросхемы можно разделить на следующие группы: трехвыводные стабилизаторы фиксированного напряжения; стабилизаторы фиксированного напряжения с малым падением напряжения на регулирующем элементе (low drop); стабилизаторы регулируемого выходного напряжения; двуполярные стабилизаторы. Стабилизаторы фиксированного выходного напряжения выполнены по функциональной схеме, приведенной на рис С источника опорного напряжения ИОН стабильное напряжение U on поступает на вход усилителя постоянного тока УПТ, выполненного на операционном усилителе. На другой вход УПТ поступает напряжение U вых R 2 /(R 1 +R 2 ), снимаемое с делителя напряжения. Регулирующий элемент РЭ построен на транзисторе VT по схеме эмиттерного повторителя. Коэффициент передачи такого регулирующего элемента близок к единице. Уравнение компенсационного стабилизатора:

3 где K 0 -коэффициент усиления УПТ; К д = R 2 /(R 1 +R 2 ) коэффициент передачи делителя напряжения. Решая это уравнение относительно U вых и учитывая, что К 0 К д >>1, получаем: Поскольку выходное напряжение зависит от нестабильности источника опорного напряжения U оn, оно не может быть стабильнее последнего. Более высокая стабильность U on ИОН по сравнению с U вых нагруженного параметрического стабилизатора, выполненного по такой же схеме, что и ИОН, объясняется тем, что ИОН подключен к высокоомному входу УПТ. Недостатком этих стабилизаторов является сравнительно большое ( до 2,5 B) падение напряжения на регулирующем элементе. Стабилизаторы с малым падением напряжения (low drop) выполнены на РЭ с коллекторным выходом. Падение напряжения на РЭ снижено в несколько раз. Структурная схема такого стабилизатора приведена на рис Регулирующий транзистор имеет два коллектора, один из которых является выходным, а другойдатчиком тока для схемы защиты от перегрузки по току. Кроме того, в схеме имеются еще две защиты: от перегрева и от повышенного входного напряжения.

4 Типовая схема включения ИСН рассмотренных стабилизаторов приведена на рис Выходной конденсатор С2 ( не менее 1мкФ для танталовых и не менее 10мкФ для алюминиевых оксидных конденсаторов) обеспечивает устойчивость при импульсном изменении тока нагрузки, снижает уровень пульсации. Входной конденсатор С1 (не менее 2,2мкФ для танталовых и не менее 10мкФ для алюминиевых оксидных конденсаторов) необходимо включить для устранения генерации при скачкообразном включении входного напряжения. Эта генерация возникает в стабилизаторе из-за влияния паразитных индуктивности и емкости соединительных проводов, образующих контур ударного возбуждения. В отсутствии С1 амплитуда паразитных колебаний может превысить максимально допустимое входное напряжение, что приведет к пробою перехода коллектор — эмиттер регулирующего транзистора. В тех случаях, когда емкость С 2 >20мкФ, случайные замыкания входной цепи могут представлять опасность для микросхемы, поскольку импульсы разрядного тока выходных конденсаторов будут создавать на ней импульсы обратного напряжения значительной амплитуды. Для защиты микросхемы от подобных перегрузок необходимо включить диод VD1 (КД510А), шунтирующий ее при замыкании входной цепи. Регулируемые стабилизаторы напряжения имеют дополнительный вывод, предназначенный для подключения делителя выходного напряжения (четырехвыводные стабилизаторы). С его помощью можно изменять или подстраивать выходное напряжение (рис. 1.4.)

5 . Структурная схема DA такая же, как у трехвыводного стабилизатора. На практике регулируемые стабилизаторы могут иметь дополнительные выводы: для подключения умощняющих транзисторов к силовой цепи; для подачи внешнего сигнала, отключающего ИМС; для подключения конденсаторов, корректирующих переходные процессы. Регулируемое выходное напряжение можно получить и с помощью трехвыводного стабилизатора (рис. 1.5.). Выходное напряжение: U вых =U выхном +(Iп+I д )R 2, (1.1) где U выхном выходное напряжение микросхемы; I П ток, потребляемый стабилизатором, I д ток делителя R1,R2. На рис приведена принципиальная схема стабилизатора с

Читайте так же:
Максимальный ток нагрузки стабилизатора

6 регулированием выходного напряжения на ИМС К142ЕН1, К142ЕН2. Микросхема выполнена на кристалле 1,7Х1,7 мм. Регулируемый элемент составной транзистор VT6, VT7. Применение составного транзистора позволяет существенно увеличить коэффициент передачи тока и уменьшить влияние неуправляемого коллекторного тока. Источник опорного напряжения служит для формирования опорного (эталонного) напряжения, с которым сравнивается часть выходного напряжения. Выделенный в результате сравнения сигнал рассогласования обеспечивает процесс автоматического регулирования выходного напряжения стабилизатора. Источник опорного напряжения в интегральном стабилизаторе представляет собой параметрический стабилизатор. В качестве стабилитрона VD1 используется эмиттер базовый переход транзистора, смещенный в обратном направлении и имеющий характеристику лавинного пробоя. Для улучшения качества эталонного напряжения ток стабилитрона стабилизируется. В качестве стабилизатора тока используется МОП транзистор VT1, у которого закорочены выводы истока и затвора. Для уменьшения выходного сопротивления параметрического стабилизатора на его выход включают эмиттерный повторитель, выполненный на транзисторе VT3, резисторах R1,R2 и диоде VD2. Основным фактором, влияющим на качество опорного напряжения, является нестабильность, вызванная изменением температурных условий интегральной схемы.для температурной компенсации опорного напряжения в схему параметрического стабилизатора вводят диод VD2.Делитель напряжения (резисторы R1,R2 ) позволяет получать опорное напряжение меньшее, чем напряжение стабилизатора VD1. Усилитель постоянного тока выполнен по дифференциальной схеме и состоит из транзисторов VT4, VT5. МОП транзистор VT2 включен как стабилизатор тока и является коллекторной нагрузкой транзистора VT5. Применение стабилизатора тока в качестве коллекторной нагрузки позволяет увеличить коэффициент усиления каскада. Для нормальной работы интегрального стабилизатора напряжения, а также для получения заданного значения выходного напряжения к микросхеме подключают

7 дополнительные дискретные элементы: резисторы и конденсаторы. Делитель напряжения, выполненный на резисторах R8,R9, являетсяделителем обратной связи. Необходимую величину выходного напряжения устанавливают при помощи переменного резистора R8.При помощи резисторов R5, R6, R7 обеспечивается работа схемы защиты при заданных перегрузках по току.в данной схеме источник опорного напряжения и усилитель постоянного тока питаются от входного напряжения. При изменении входного напряжения U вх ( например, увеличении ) в первый момент возрастает выходное напряжение U вых. Это вызывает повышение напряжений на резисторах делителя R8,R9. Напряжение на нижнем плече делителя U R8,9 сравнивается с напряжением на резисторе R3, которое равно опорному напряжению U on. Увеличение напряжения U R8,9 приводит к возрастанию токов базы и коллектора транзистора VT5. Ток стока МОП транзистора VT2 I C2 величина постоянная, равная сумме токов I K5 +I б7.при повышении тока I K5 ток базы транзистора I б7 уменьшается, так как I C2 =const. Уменьшение тока I б7 приводит к уменьшению тока базы транзистора VT6 I б6 и к увеличению напряжения коллектор эмиттер. В результате напряжение U вых уменьшается до своего первоначального значения с определенной степенью точности. При изменении тока нагрузки I н ( например, понижении ) в первый момент уменьшаются падение напряжения на регулирующем транзисторе VT6 и падение напряжения на внутреннем сопротивлении источника, питающего стабилизатор. Увеличивается выходное напряжение U вых, что приводит к возрастанию напряжения на нижнем плече делителя U R8,9. В дальнейшем схема работает так, как было показано выше. В стабилизаторе предусмотрена защита от перегрузок по току и от короткого замыкания. Эту функцию в интегральном стабилизаторе выполняет транзистор VT9, который работает совместно с дополнительными внешними резисторами R5, R6, R7. Напряжение база — эмиттер транзистора VT9: U бэ9 =U R6 -U бэ6 -U R5. При нормальной работе транзистора, когда ток нагрузки не превышает заданное максимальное значение, напряжение U R5 мало и напряжение U R6 >(U R5 +U бэ6 ). В этом случае на базу транзистора VT9 относительно его эмиттера подается отрицательное смещение и он заперт. При перегрузке по току или коротком замыкании на выходе схемы напряжение U R5 возрастает и становится больше напряжения (U бэ6 -U R6 ). Транзистор VT9 открывается, и на базу составного регулирующего транзистора (VT6, VT7 ) подается отрицательный потенциал с резистора R5. Регулирующий транзистор запирается и ограничивает величину тока нагрузки. При устранении перегрузки схема возвращается в исходное состояние. Изменяя величину сопротивления резистора R5, можно регулировать величину тока, при котором срабатывает защита. В интегральном стабилизаторе предусмотрена возможность запирать составной регулирующий транзистор внешним сигналом. Если на базу транзистора VT8 интегральной схемы ( вывод 9) от внешнего источника подать положительный сигнал, то транзистор открывается. При этом на базу составного регулирующего транзистора VT6, VT7 подается отрицательный потенциал через открытый транзистор VT8. Составной транзистор запирается. Выходное напряжение стабилизатора падает до нуля.

8 В двуполярных стабилизаторах плюс и минус выходного напряжения поступают на нагрузку относительно общей ( нулевой или корпусной ) шины. Структурная схема такого стабилизатора приведена на рис Стабилизатор, включенный в минусовую шину питания, является ведущем, его выходное напряжение устанавливается делителем R3,R4, а источник опорного напряжения ИОН используется как для стабилизатора отрицательного, так и положительного напряжений. Связь обоих стабилизаторов осуществляется через общий делитель R5, R6. Оба стабилизатора имеют раздельные узлы токовой защиты Т31 и Т32 со своими резисторами токовой защиты R1 и R2. Узел тепловой защиты ТПЗ общий для обоих стабилизаторов. Подобную структурную схему имеют стабилизаторы К142ЕН6 и КР142ЕН15.

Читайте так же:
Как стабилизатор тока повышает напряжение

Ф е д е р а л ь н о е а г е н т с т в о п о о б р а з о в а н и ю

Ф е д е р а л ь н о е а г е н т с т в о п о о б р а з о в а н и ю У х т и н с к и й г о с у д а р с т в е н н ы й т е х н и ч е с к и й У н и в е р с и т е т С т а б и л и з а т о р н а п р я ж е н и я

Применение lm317 для светодиодов. Интегральный стабилизатор напряжения LM317

Применение lm317 для светодиодов. Интегральный стабилизатор напряжения LM317

Интегральные стабилизаторы этой серии удобны в использовании во множестве иных применений. Некоторые из его нестандартных применений я вам хочу показать.
В силу того, что данные стабилизаторы имеют «плавающие» относительно «земли» потенциалы выводов, ими могут быть стабилизаторами напряжения в несколько сотен вольт, при условии, что не будет превышен допустимый предел разности напряжений вход-выход.

Кроме того, ИС LM117/LM217/LM317 удобны при создании простых регулируемых импульсных стабилизаторов, стабилизаторов с программируемым выходным напряжением, либо для создания прецизионного стабилизатора тока.
Некоторые схемы их необычных применений показаны на рисунках.

Мощный повторитель напряжения.

R1-определяет выходное сопротивление зарядного устройства Zвых = R1(1+R3/R2). Использование R1 позволит при малой скорости заряда обеспечить максимальный заряд батареи.
________________________________________

Интегральные стабилизаторы данной серии можно с успехом использовать для стабилизации тока. Это очень удобно для изготовления на их основе различных зарядных устройств.
________________________________________

На этой схеме изображён интегральный стабилизатор напряжения с плавным запуском. Ёмкость конденсатора С2 задает плавность включения стабилизатора.
________________________________________

Высокая стабильность данного стабилизатора, достигается за счет использования дополнительного интегрального двухвыводного стабилитрона повышенной стабильности.

Интегральные стабилизаторы напряжения LM117/LM317, LM150/IP150, LM138/LM238/LM338
Долгое время у меня служил блок питания, построенный по классической схеме параметрического стабилизатора напряжения с защитой от короткого замыкания . Только в целях получения большего выходного тока транзисторы VT2 и VT3 были заменены на КТ315 и КТ818 соответственно. Полярность выходного напряжения при этом другая, так что все конденсаторы, диоды и стабилитрон (я, кстати, применял КС518 — он выдает 18 вольт) должны быть включены обратной полярностью. Кроме того, вместо VT1 — МП38.
Этот блок питания (БП) являлся универсальным источником энергии для моих домашних экспериментов, выдавая от 0,5 до 18 вольт стабилизированного напряжения при токе 1 — 1,5А. Однако был у него и недостаток — из-за низкого КПД подобных схем выходной мощный транзистор греется как печка.
Долго я хотел сделать этот БП на интегральной базе (там и КПД повыше, да и есть такие функции как защита от перегрева, от короткого замыкания или даже от превышения допустимого тока), только не попадались мне на глаза подобные микросхемы. К142ЕН1, К142ЕН2 — малая мощность, придется ставить дополнительный транзистор на усиление тока, да и слишком много выводов у неё. На КР142ЕН5 можно сделать регулируемый стабилизатор напряжения (СН), однако в этом случае минимальное напряжение будет 5В, что тоже нежелательно.
Таким образом, на отечественной элементной базе построить интегральный СН с желаемыми параметрами невозможно.
Однако зарубежная промышленность (точнее, фирма National Semiconductor) выпускает одну интересную микросхему LM317 (аналог — LM117 той же фирмы — различаются по ряду параметров, в частности, по диапазону рабочих температур, у LM117 он шире (от -55 до +150 °C)).
Так вот, эти микросхемы представляют собой регулируемые СН с выходным напряжением 1,2 — 37В при выходном токе 1,5А. Как уверяют производители, они снабжены защитой от короткого замыкания, выходной ток не зависит от температуры кристалла, гарантируется максимальная нестабильность выходного напряжения 0,3%, подавление пульсаций — на уровне 80 дБ.
К этому стоит добавить малые размеры (микросхема имеет всего три вывода, выпускается в различных корпусах: ТО-220, ТО-3, ТО-39, TO-263, SOT-223, TO-252 (рис. 1)) и низкую стоимость (в магазине я купил LM317 в корпусе ТО-220 за 10 рублей).

Рисунок 1 — Внешний вид корпусов LM117/LM317
Схема регулируемого стабилизатора напряжения показана на рисунке 2.

Рисунок 2 — Схема регулируемого СН (1,25 — 25 В)
Также эти микросхемы применяют как зарядные устройства для аккумуляторных батарей. Типичная схема такого устройства приведена на рисунке 3. Здесь используется принцип зарядки постоянным током.

Рисунок 3 — Схема зарядного усторойства

Как видно из рисунка, ток заряда определяется сопротивлением R1. Значения этого сопротивления лежат в пределах, указанных на рисунке. Это соответствует току заряда от 10 мА до 1,56 A.
Хочу отметить, что если требуется получить больший выходной ток СН, то лучше использовать специальные микросхемы:
— на ток до 3А рассчитана LM150 (IP150);
— на ток до 5А рассчитаны LM138 / LM238 / LM338 (отличаются диапазоном рабочих температур, самый широкий — у LM138 (от -55 до +150 °C).
Схемы включения у этих микросхем такие-же, что и на рисунке 2, цоколевка — как на рисунке 1.
Далее приведены схемы зарядного устройства для автомобильного кислотно-свинцового аккумулятора (рис. 4) и стабилизатора напряжения с максимальным током 10А (рис. 5) как примеры дополнительного применения микросхем LM150 и LM138.

Читайте так же:
Чем стабилизатор напряжения отличается от стабилизатора тока

Рисунок 4 — Зарядное устройство для автомобильного аккумулятора на LM150(IP150)


Рисунок 5 — СН с выходным током до 10А

В заключение хочу заметить, что выходной конденсатор С2 по схеме на рис.2 может быть емкостью от 1 до 1000 мкФ — в зависимости от целей применения СН. Однако при емкости свыше 10 мкФ и/или выходном напряжении выше 25 В требуется в схему включать защитные диоды (рис. 6). Это нужно для того, чтобы предотвратить импульс тока, который может возникнуть при коротком замыкании в нагрузке из-за разряда выходного конденсатора. Этот импульс тока может достигать величины 20 А и повредить микросхему.


Рисунок 6

Литература:
1. Shema.Tomsk.Ru — Блок питания с защитой от КЗ;
2. Shema.Tomsk.Ru — Стабилизаторы напряжения на микросхемах серии К142;
3. National Semiconductor — LM117/LM317A/LM317 3-Terminal Adjustable Regulator;
4. LM138/238/LM338 — ADJUSTABLE VOLTAGE REGULATORS THREE-TERMINAL 5-A;
5. LM150/250/LM350 — ADJUSTABLE VOLTAGE REGULATORS THREE-TERMINAL 3 A;
6. LM150K 3.0A Adjustable Positive Voltage Regulator.

Очень многие используют аккумуляторы для питания радиоэлектронной аппаратуры, при этом заряжают их зарядными устройствами сомнительного поисхождения. Ниже приводится описание простого зарядного устройсва обеспечивающего стандартный режим заряда.
Зарядное устройство использует принцип зарядки постоянным токо. В качестве источника тока используется очень хорошая микросхема LM317. Схема включения изображена на рисунке:

Класическое определение источника тока: источник тока — это источник электрической энергии имеющий безконечне внутреннее сопротивление и такое же безконечное напряжение на свобоных зажимах.
Принцип работы примерно такой. LM317 регулируя ток по выводу 3 пытается добится падения напряжения на резисторе R1 равного 1,25V. Следовательно изменяя номинал R1 можно регулировать ток в определенных пределах. Эти приделы ограничены с одной стороны величиной в 0,8 Ом а с другой в 120 Ом(0,8 Share on Facebook Share

Стабилизатор тока на транзисторе

Светодиодные светильники выполняют свои функции полноценно при качественном питании. Даже незначительные колебания силы тока в цепи провоцируют видимые пульсации, ухудшают долговечность. Аналогичные задачи решают в процессе зарядки аккумуляторных батарей. Для корректного решения обозначенных и других проблем подойдет стабилизатор тока на транзисторе. Самостоятельная сборка поможет обеспечить рабочие параметры устройства в точном соответствии с техническим заданием. Представленные ниже сведения пригодятся для выбора оптимальной электрической схемы.

Особенность стабилизатора на транзисторах

Применение такой элементной базы позволяет очень точно настроить работу блока стабилизации. Значительное выходное сопротивление транзистора уменьшает обратное влияние нагрузки. Отсутствие резисторов с большими номиналами в цепи уменьшает потери, что улучшает экономические параметры устройства.

Виды стабилизаторов

В простейшем варианте применяют ограничитель сил тока из резистора, установленного последовательно в цепь со светодиодом. Стандартные приборы подключают к источникам 5V (12V). Увеличивая напряжение, можно улучшить точность, однако при этом снизится КПД.

Максимальные значения электрических параметров источника должны быть на 10% больше рабочих значений светодиода. Падение напряжения указано в сопроводительной документации. Для расчета резистора (R) применяют следующую формулу:

где:

  • Uп – напряжение источника питания;
  • Uc – падение на светодиоде;
  • Iпот – ток потребления.

Пример:

  • Uп = 5 V;
  • Uc = 2,5 V;
  • Iпот = 0,25 А;
  • R = (5-2,5)/0,3 ≈ 8,33 Ом;
  • ближайший номинал – 8,45 Ом;
  • мощность резистора = 0,3*0,3*8,45 ≈ 0,75 Вт.

К сведению. Последняя строка расчета наглядно демонстрирует энергетические потери. Нагревающийся резистор будет повышать температуру окружающей среды.

Усовершенствованные схемы собирают из следующих компонентов:

  • трансформатором изменяют нужным образом амплитуду сигнала;
  • для выпрямления применяют обычный мостик из диодов;
  • конденсаторами сглаживают пульсации;
  • резисторами ограничивают выходные токи.

Транзисторный стабилизатор напряжения и тока отличается экономичностью. Электрическое сопротивление во входной цепи устанавливают в качестве датчика. Этот компонент дополняет стабилитрон. Изменение напряжения на эмиттере позволяет регулировать выходные параметры автоматически без контроля и вмешательства со стороны пользователя.

Аналогичные функции вместо стабилитрона способен выполнить эмиттерный переход биполярного транзистора при соответствующем включении в электрическую схему.

Вместо набора из нескольких радиодеталей удобнее пользоваться специализированными микросхемами. Такие изделия обеспечивают высокую точность поддержания рабочих параметров выходного сигнала. Как в примере со стабилитроном, в определенной цепи устанавливают резистор для оперативного детектирования изменения силы тока.

Отдельно следует отметить импульсные схемы стабилизаторов. Такие изделия создают на основе быстродействующих электронных ключей. Главной особенностью является возможность оперировать с относительно высокими значениями выходных напряжений.

Простой стабилизатор тока на транзисторе

Параметры компонентов и рабочие характеристики схемы:

  • R1 выбирают 1-15 Ом;
  • R2 – от 150 до 250 Ом;
  • D1 – стабилитрон или резистор подходящего номинала;
  • Q1 – КТ 818 или аналог;
  • напряжение источника питания – от 8 до 40 V;
  • ток на выходе – 0,5-4,5А.

Пояснения:

  • R2 и D2 формируют стандартный делитель напряжения;
  • изменением потенциала на базе корректируется ток в цепи коллектора;
  • при подключении мощной нагрузки R1 сильно нагревается;
  • для точной регулировки выходных параметров устанавливают переменное сопротивление R2 (изменяют порог насыщения на соответствующем полупроводниковом переходе);
  • при необходимости увеличивают выходной ток с применением составного транзистора.

Если расчет сделан точно, в рабочем диапазоне стабилизация тока выполняется с минимальными потерями. Простую схему несложно изготовить собственными руками даже без предыдущего опыта сборки.

Сборка стабилизатора тока из двух транзисторов

В этой схеме функции датчика выполняет резистор R2. Его номинал при подключении светодиодов выбирают с помощью формулы:

0,6/ Iн (ток в нагрузке).

Увеличение Iн открывает VT2, который, в свою очередь, запирает переход транзистора VT1.

Читайте так же:
Самодельная схема стабилизатора тока

Недостатком схемы специалисты считают существенное падение напряжения на основном транзисторе. При подключении нескольких светодиодов проблемы не возникают. Однако по мере увеличения нагрузки приходится ставить VT1 на крупный радиатор, обеспечивать эффективную вентиляцию рабочего объема. Подобные решения используют для создания мощных зарядных устройств.

Реле тока на микросхемах импульсных стабилизаторов

Для уменьшения потерь и поддержания широкого рабочего диапазона применяют готовые решения. В этом разделе представлен импульсный стабилизатор тока на микросхеме MAX771.

Контрольное напряжение подают с делителя (R1, R2). Если превышен установленный производителем уровень, автоматически корректируются выходные параметры.

Как сделать светодиодный стабилизатор

Простую конструкцию из резистора, конденсатора и стабилитрона можно собрать буквально за несколько минут. Используют универсальную монтажную плату или навесной способ сборки. Номинал электрического сопротивления выбирают с учетом параметров нагрузки. При необходимости устанавливают самодельный радиатор из подходящей алюминиевой пластины.

Стабилизаторы тока на микросхемах

Применение такой элементной базы несколько увеличивает себестоимость проекта. Однако использование качественных микросхем обеспечивает хорошие стабилизационные характеристики в широком диапазоне входных параметров. С учетом хороших показателей эффективности можно рассчитывать на небольшое потребление электроэнергии.

TL431

В левой части рисунка показана схема типового подключения микросхемы TL 431 (DA1). Отмечена главная функция – поддержание напряжения 2,5 V на контрольном резисторе.

Такая конструкция пригодна для последовательного подключения нескольких десятков светодиодов суммарной мощностью 12-14 Вт. Силовые компоненты подбирают с учетом реальных потребностей. В представленном примере падение напряжения на транзисторе составит 25-35V. Рассеивается не более 1,75 Вт. В таком варианте радиатор не требуется.

Резистор на входе (R3) предотвращает повреждение конденсатора при включении блока в сеть. Ток в нагрузке ограничивает безопасным уровнем сопротивление R3. При выборе светодиодов специалисты рекомендуют делать запас по мощности, чтобы продлить срок службы одновременно с уменьшением тепловыделения.

LM7805, LM7812

В представленном ниже варианте схемотехники следует повысить входное напряжение. Его уровень должен быть больше на 2,5-3V, чем номинал стабилизации данной микросхемы.

В примере показан стабилизатор напряжения постоянного тока, который рассчитан на 9-11 Вт подключаемой нагрузки.

LM317

При подключении нагрузки 28-30 Вт эта микросхема обеспечивает стабилизацию тока 100 мА. Диапазон входного напряжения – от 207 до 240 V.

В таблице на рисунке представлены значения регулировочного резистора, соответствующие определенным выходным параметрам.

При выборе подходящей схемы следует учесть в комплексе:

  • минимальные и максимальные напряжения в цепи питания;
  • точность стабилизации;
  • эффективность устройства;
  • сложность изготовления определенной конструкции собственными руками;
  • стоимость комплектующих деталей, расходных материалов.

Заранее рекомендуется подготовить перечень инструментов, приспособлений, измерительных приборов. Аккуратное выполнение рассмотренных выше инструкций поможет создать функциональный стабилизатор без ошибок и лишних затрат.

Видео

Что такое интегральный стабилизатор тока

Стабилизаторы тока

Бывают случаи, когда необходимо пропускать стабильный ток через светодиоды, ограничить ток зарядки аккумуляторов или испытать источник питания, а реостата под рукой нет. В этом, и не только, случае помогут специальные схемотехнические решения ограничивающие, регулирующие и стабилизирующие ток. Далее подробно рассмотрены схемы стабилизаторов и регуляторов тока

Источники тока, в отличие от источников напряжения, стабилизируют выходной ток, изменяя выходное напряжение так, чтобы ток через нагрузку всегда оставался одинаковым.
Таким образом, источник тока отличается от источника напряжения, как вода отличается от суши. Типичное применение источников тока – питание светодиодов, зарядка аккумуляторов и т.п.
Внимание! Не путайте стабилизатор тока со стабилизатором напряжения! Это может плохо кончиться =)

Простой стабилизатор тока на КРЕНке

Для этого стабилизатора тока достаточно применить КР142ЕН12 или LM317. Это регулируемые стабилизаторы напряжения способные работать с токами до 1,5А, входными напряжениями до 40В и рассеивают мощность до 10Вт (при соблюдении теплового режима).
Схема и применение показаны на рисунках ниже

Стабилизатор тока на КР142ЕН12 (LM317)

Стабилизатор тока на КРЕН в качестве зярядного устройства

Собственное потребление данных микросхем относительно невелико – около 8мА и это потребление практически не меняется при изменении тока протекающего через крен или изменения входного напряжения. Как видим, в вышеприведенных схемах, стабилизатор LM317 работает как стабилизатор напряжения, удерживая на резисторе R3 постоянное напряжение, которое можно регулировать в некоторых пределах построечным резистором R2. В данном случае R3 называется токозадающим резистором. Поскольку сопротивление R3 неизменно, то ток через него будет стабильным. Ток на входе крен будет примерно на 8мА больше.

Таким образом, мы получили простой как веник стабилизатор тока, который может применяться как электронная нагрузка, источник тока для заряда аккумуляторов и т.п.

Интегральные стабилизаторы достаточно шустро реагируют на изменение входного напряжения. Недостаток же такого регулятора тока – весьма большое сопротивление токозадающего резистора R3 и как следствие необходимость применять более мощные и более дорогие резисторы.

Простой стабилизатор тока на двух транзисторах

Достаточно широкое распространение получили простенькие стабилизаторы тока на двух транзисторах. Основной минус данной схемы – не очень хорошая стабильность тока в нагрузке при изменении питающего напряжения. Впрочем, для многих применений сгодятся и такие характеристики.

Далее показана схема стабилизатора тока на транзисторе. В данной схеме токозадающим резистором является R2. При увеличении тока через VT2, увеличится напряжение на токозадающем резисторе R2, которое при величине примерно 0,5…0,6В начинает открывать транзистор VT1. Транзистор VT1 открываясь начинает закрывать транзистор VT2 и ток через VT2 уменьшается.

Стабилизатор тока на транзисторах

Вместо биполярного транзистора VT2, можно применить MOSFET – полевой транзистор.

Стабилитрон VD1 выбирается на напряжение 8…15В и необходим в случаях, когда напряжение источника питания достаточно велико и может пробить затвор полевого транзистора. Для мощных MOSFET это напряжение составляет порядка 20В. Далее показана схема стабилизатора тока с использованием MOSFET.

Читайте так же:
Стабилизатор тока или стабилизатор напряжения для дхо

Стабилизатор тока на полевом транзисторе

Нужно учитывать, что MOSFET открываются при напряжении на затворе не менее 2В, соответственно увеличивается и напряжение, необходимое для нормальной работы схемы стабилизатора тока. При зарядке аккумуляторов и некоторых других задачах вполне достаточно будет включить транзистор VT1 с резистором R1 непосредственно к источнику питания так, как это показано на рисунке:

Стабилизатор тока на полевом транзисторе

В схемах стабилизатора тока на транзисторах необходимое значение токозадающего резистора для заданного значения тока примерно в два раза меньше, чем в схемах со стабилизатором на КР142ЕН12 или LM317. Это позволяет применить токозадающий резистор меньшей мощности.

Стабилизатор тока на операционном усилителе (на ОУ)

Если необходимо собрать регулируемый в широких пределах стабилизатор тока или стабилизатор тока с токозадающим резистором на порядок или даже два ниже, чем на схемах, показанных ранее, можно применить схему с усилителем ошибки на ОУ (операционном усилителе). Схема такого стабилизатора тока показана на рис:

Стабилизатор тока на операционном усилителе

В данной схеме токозадающим является резистор R7. ОУ DA2.2 усиливает напряжение токозадающего резистора R7 – это усиленное напряжение ошибки. ОУ DA2.1 сравнивает опорное напряжение и напряжение ошибки и регулирует состояние полевого транзистора VT1.

Обратите внимание, что схема требует отдельного питания, подаваемого на разъем XP2. Напряжение питания должно быть достаточным для работы компонентов схемы и не превышать значения напряжения пробоя затвора MOSFET VT1.

В качестве генератора опорного напряжения в схеме на рис. 7 применена микросхема DA1 REF198 с выходным напряжением 4,096В. Это достаточно дорогая микросхема, поэтому ее можно заменить обычной кренкой, а если напряжение питания схемы (+U) является стабильным, то и вовсе обойтись без стабилизатора напряжения в данной схеме. В этом случае переменный резистор R подсоединяется не к REF, а к +U. В случае электронного управления схемой вывод 3 DA2.1 можно подключить непосредственно к выходу ЦАП.

Для настройки схемы необходимо выставить ползунок переменного резистора R1 в верхнее по схеме положение, подстроечным резистором R3 установить необходимое значение тока – это значение будет максимальным. Теперь резистором R1 можно регулировать ток через VT1 от 0 до установленного при настройке максимального тока. Элементы R2, C2, R4 необходимы для предотвращения возбуждения схемы. Из-за этих элементов временные характеристики не являются идеальными, что видно по осциллограмме

Осциллограмма стабилизатора тока на ОУ

На осциллограмме луч 1 ( желтый ) показывает напряжение нагружаемого ИП (источника питания), луч 2 ( голубой ) показывает напряжение на токозадающем резисторе R7. Как видно, в течение 80 мкс через схему протекает ток в несколько раз больше установленного.

Стабилизатор тока на микросхеме импульсного стабилизатора напряжения

Иногда от стабилизатора тока требуется не только работать в широком диапазоне питающих напряжений и нагрузок, но и иметь высокий КПД. В этих случаях компенсационные стабилизаторы не годятся и на смену им приходят стабилизаторы импульсные (ключевые). Кроме того, импульсные стабилизаторы могут при небольшом входном напряжении получать высокое напряжение на нагрузке.

Далее предлагается к рассмотрению широко распространенная микросхема MAX771. Основные характеристики MAX771:

  • Напряжение питяния 2…16,5В
  • Собственное потребление 110uA
  • Выходная мощность до 15W
  • КПД при токе нагрузки 10mA…1A достигает 90%
  • Опорное напряжение 1,5V

На рисунке показан один из вариантов включения микросхемы, именно его мы и возьмем за основу нашей схемы.

MAX771 включен как повышающий стабилизатор напряжения

Упрощенно процесс стабилизации выглядит следующим образом. Резисторы R1 и R2 являются делителями выходного напряжения микросхемы, как только делимое напряжение, поступающее на вывод FB микросхемы MAX771, больше опорного напряжения (1,5V) микросхема уменьшает выходное напряжение и наоборот — если напряжение на выводе FB меньше 1,5V, микросхема увеличивает входное напряжение.

Очевидно, что если контрольные цепи изменить так, чтобы MAX771 реагировала (и соответственно регулировала) выходной ток, то мы полчим стабилизированный источник тока.
Ниже показаны модифицированная схема с ограничением выходного напряжения и вариант нагрузки.

При небольшой нагрузке, пока падение напряжения на токоизмерительном резисторе R3 меньше 1,5V, схема на Рис.10a работает как стабилизатор напряжения, стабилизируя напряжение на уровне стабилитрона VD2 + 1,5V. Как только ток нагрузки становится достаточно большим, на R3 падение напряжения увеличивается и схема переходит в режим стабилизации тока.

Резистор R8 устанавливается в том случае, если напряжение стабилизации может быть большим — больше 16,5V. Резистор R3 является токозадающим и рассчитывается по формуле: R3 = 1,5/Iст.
Недостатком схемы является достаточно большое падение напряжения на токоизмерительном резисторе R3. Данный недостаток устраняется применением операционного усилителя (ОУ) для усиления сигнала с резистора R3. Например, если резистор требуется уменьшить в 10 раз при заданном токе, то усилитель на ОУ должен усилить напряжение падающее на R3 тоже в 10 раз.

Заключение

Итак, было рассмотрено несколько схем выполняющих функцию стабилизации тока. Конечно же, эти схемы можно улучшать, увеличивая быстродействие, точность и т.д. Можно применять в качестве датчика тока специализированные микросхемы и делать сверхмощные регулирующие элементы, но эти схемы идеально подходят в тех случаях, когда требуется быстро создать инструмент для облегчения своей работы или решения определенного круга задач.

голоса
Рейтинг статьи
Ссылка на основную публикацию