Schetchiksg.ru

Счетчик СГ
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое параметрический стабилизатор тока

Что такое параметрический стабилизатор тока

Сведения из теории. Стабилитрон представляет собой специальный диод включаемый «встречно» направлению постоянного тока. Основное свойство стабилитрона состоит в том, что при больших изменениях «обратного» тока проходящего через него, «обратное» падение напряжение постоянного тока на нем изменяется незначительно. На этом свойстве стабилитрона основана работа параметрического стабилизатора. Когда напряжение на входе стабилизатора увеличивается, увеличивается и ток через стабилитрон. Стабилитрон и резистор включены последовательно, поэтому, при изменении напряжения на входе схемы, напряжение на стабилитроне (на выходе) остается постоянным, а остальное напряжение падает на балластном резисторе. Входом любой схемы называются электроды, куда подается ток, напряжение или сигнал. Выходом схемы называются те электроды, откуда снимается сигнал или подключается нагрузка. Балластным называется элемент цепи, на котором расходуется электрическая энергия. Балластное сопротивление должно быть достаточно мощным, чтобы выдержать всю мощность (тепло) выделяемую проходящим по нему током. Величина балластного сопротивления определяется делением разницы минимального и максимального падений напряжений на нем, на разницу максимального и минимального тока проходящего по нему.

Цель работы: Закрепить навыки работы с мультиметром по измерению токов и напряжений, построить график выходного напряжения в зависимости от входного напряжения. Попрактиковаться в соединении деталей методом пайки, получить навык в работе с справочными данными. Выходным напряжением у этой схемы является напряжение на стабилитроне.

1.Записать тему и зарисовать схему включения стабилизатора

2.По типу стабилизатора определить величину допустимого тока Iмах и Iмин. и Uст. из справочных данных.

3.Выбрать резистор R1 исходя из условия

4.Разбить заданный диапазон входных напряжений не менее чем на десять значений и подавая эти напряжения питания на вход стабилизатора измерять напряжения на выходе, записывая в тетрадь. Построить график.

Исходные данные: Наибольшее напряжение на входе Uмакс.= .

: Наименьшее напряжение на входе Uмин.= .

Ток в нагрузке Iн.макс. = .

Ток в нагрузке Iн.мин. = .

Напряжение стабилизации Uст. =

Максимальный ток через стабилитрон Iст.макс. = .

Минимальный ток через стабилитрон Iст.мин. = .

Рассчитать мощность резистора R1 Рн = (Umaкс. — Uмин)*(Iст.макс. + Iн.мин) и выбрать резистор с мощностью рассеяния не менее рассчитанной.

Собрать схему. Постепенно подавая входное напряжение от Uмин. до Uмакс. измерять напряжение на стабилизаторе.

Записать результаты в таблицу и построить график вольтамперной характеристики.

Номер измерения1234567
Напряж. входа
Напряжение вых.
Ток нагрузки (А)

1. Что стабилизирует стабилитрон, ток или напряжение?

2. Куда девается «лишнее» напряжение с входа?

3. Что называется балластным сопротивлением?

4. Что называется входом схемы?

5. Что изменится, если напряжение на входе повысится?

6. Что называется входным напряжением?

7. Что называется выходом схемы?

8. Что называется выходным напряжением?

9. Где больше напряжение на входе схемы или на стабилитроне?

10. Что называется параметрическим стабилизатором напряжения?

1. Амперметр (Ампервольтомметр) — один.

2. Вольтметр (Ампервольтомметр) — два.

4. Блок питания постоянного тока с регулированием напряжения.

5. Резистор постоянный — 1 шт.

6. Стабилитрон — 1 шт.

7. Соединительные концы.

8. Макетная плата.

9. Паяльник, припой, флюс.

ЛАБОРАТОРНАЯ РАБОТА 21

Транзистор. Управление током с помощью транзистора.

Сведения из теории. Транзистором (биполярным) называется электронный полупроводниковый прибор имеющего три электрода – эмиттер, база, коллектор. Эмиттер – электрод, испускающий заряды в транзисторе. Коллектор – электрод, собирающий заряды в транзисторе. База (затвор) – электрод, управляющий потоком зарядов в транзисторе. Основное свойство транзистора — сильно изменять ток в цепи эмиттер-коллектор при небольших изменениях тока в цепи базы. Это свойство оценивается коэффициентом усиления по току β и указывается в технических характеристиках типа транзистора. Это свойство можно использовать для регулирования тока в электрических цепях с большим током, управляя маленьким током базы. Транзистор здесь используется в качестве «резистора переменного сопротивления», только изменением сопротивления транзистора управляют не ручкой, а с помощью небольших изменений тока базы.

Цель работы: Закрепить понятие о свойствах транзистора по управлению током и его характеристиках, попрактиковаться в измерении токов и напряжений, попрактиковаться в работе со справочными данными на транзистор.

1.Записать тему и зарисовать схему включения транзистора.

2. Определить максимально – допустимый ток и напряжение лампочки из технических характеристик на нее.

3. По величине тока и напряжения лампочки подобрать тип транзистора из условия, максимально-допустимый ток коллектора должен быть больше тока лампочки, а допустимое напряжение эмиттер – коллектор больше напряжения питания лампочки Uпит.

4. Определить величину максимально допустимого тока базы Iб.мах из справочных данных. Если в справочнике Iб.мах нет то определить расчетом Iб.мах = Iк.мах / βмах

где Iк.мах — максимально допустимый ток коллектора.

βмах — максимальный коэффициент усиления по току для этого типа транзистора из справочника.

5.Выбрать резистор R1 исходя из условия R1 > Uпит./Iб.мах

6.Выбрать резистор Rп. исходя из условия Rп.>(1-10)*R1

7.Проверить годность транзистора, собрать схему, подать напряжение питания Uпит.

8. Задавая ток базы Iб. от меньшего к большему значению измерять и записывать ток коллектора.

9. Построить график зависимости напряжения на лампочке от тока базы.

Номер измерения1234567
Ток базы (мА.)
Напряжение ( V)

ПРИМЕЧАНИЕ. Полярность подключения источника питания зависит от типа транзистора.

1. Что такое транзистор, каково его главное свойство?

2. Как называются электроды транзистора?

3. Какие технические характеристики транзистора здесь используются?

4. Зачем необходим резистор R1?

5. Зачем необходим резистор Rп?

6. Какой ток больше базовый или коллекторный?

7. Чем управляет транзистор током или напряжением?

Стабилизаторы напряжения

Стабилизатором напряжения (СТН) называют устройство, поддерживающее с определенной точностью неизменным напряжение на нагрузке. Другими словами, стабилизатор напряжения — это устройство, на выходе которого напряжение остается неизменным при воздействии дестабилизирующих факторов.

Стабилизаторы бывают параметрические (ПСН) и компенсационные (КСН). Параметрический стабилизатор наиболее простой. Его работа основана на свойствах полупроводникового диода, а точнее на одной из его разновидностей — стабилитрона. Типичная наипростейшая схема параметрического стабилизатора приведена на рисунке 1.

Рис. 1 — Параметрический стабилизатор напряжения

В стабилитронах используется явление электрического лавинного пробоя. При этом в широком диапазоне изменения тока через диод напряжение изменяется на нем очень незначительно. Входное напряжение через ограничительный резик Rбал подводится к параллельно включенным стабилитрону и сопротивлению нагрузки. Поскольку напряжение на стабилитроне меняется незначительно, то и на нагрузке оно будет иметь тот же характер. При увеличении входного напряжения практически все изменение Uвх передается на Rбал, что приводит к увеличению тока в нем. Увеличение этого тока происходит за счет увеличения тока стабилизации при почти неизменном токе нагрузки. Другими словами, все изменение входного напряжения поглощается в ограничительном (балластном) резике.

Часто стабилитрон работает в таком режиме, когда напряжение источника гуляет (т. е. нестабильно), а сопротивление нагрузки постоянно. Для нормального режима стабилизации сопротивление резика Rогр должно иметь определенное значение. Если напряжение Uвх гуляет от Umin до Umax, то для расчета Rогр можно воспользоваться формулой:

где Uвх.ср = 0.5(Uвх.min + Uвх.max) — среднее значение напряжения источника, Iср. = 0.5(Imin + Imax) — средний ток стабилитрона, Iн = Uн/Rн — ток нагрузки. При изменении входного напряжения в ту или иную сторону будет изменяться ток стабилитрона, на напряжение на нем, следовательно и на нагрузке будет оставаться постоянным.

Коли все изменения напряжения источника гасятся в Rогр, то наибольшее изменение напряжения (Uвх. max — Uвх.min = ΔUвх) должно соответствовать наибольшему возможному изменению тока, при котором еще сохраняется стабилизация (Imax — Imin = ΔIст). Отсюда следует, что стабилизация будет осуществляться только при соблюдении условия:

Бывает режим стабилизации, когда входное напряжение постоянно, а сопротивление нагрузки изменяется, т. е. гуляет от Rн.min до Rн.max. Для такого режима Rогр определяется по формуле:

Иногда необходимо получить такое напряжение, на которое стабилитрон не рассчитан. В этом случае применяют последовательное соединение стабилитронов. Тогда напряжение стабилизации будет соответствовать сумме напряжений стабилизаций последовательно включенных стабилитронов.

Помимо рассмотренной схемы применяют каскадное включение стабилитронов. Говоря проще, берут несколько вышерассмотренных схем и включают одну за другой. При этом напряжение стабилизации предыдущего стабилитрона должно быть больше, чем следующего. Такие схемы применяют для увеличения коэффициента стабилизации. Бывает еще и мостовая схема, называемая мостовой параметрический стабилизатор. Теоретически у такой схемы коэффициент стабилизации стремится к бесконечности (хотя в это верится с трудом).

К сожалению большой мощи с вышерассмотренной схемы не снять. Поэтому придумали ниже приведенную схемку, которая проста до безобразия.

Рис. 2 — Параметрический стабилизатор напряжения с усилителем мощности

Как видим, ничего сложного. Просто нагрузку воткнули через транзистор, включенный по схеме ОК, выполняющего роль усилителя мощности.

Ахтунг: Как-то один препод втулял на полном серьезе, что схема на рисунке 2 — компенсационный стабилизатор напряжения. Тогда меня чуть не вывернуло. Не ведитесь на такую фигню. Про КСН чуть ниже. Там и будет понятно отличие ПСН от КСН.

Такая схема при малых и средних токах нагрузки работает как стабилизатор, а при больших токах нагрузки — как транзисторный фильтр (если параллельно стабилитрону влепить кондер). Если параллельно стабилитрону влепить переменный (подстроечный) резик, то выходное напряжение становиться регулируемым. Можно также влепить параллельно нагрузке кондер. Кондеров вообще можно повтыкать несколько штук, не повредит. Для уменьшения высокочастотной (ВЧ) составляющей выходного напряжения параллельно нагрузке втыкают кондер емкостью 0,01. 1 мкФ. Это касается любых источников питания. В умных книжках пишут, что кондер должен быть керамический, хотя и бумажные, слюдяные, пленочные и прочие работают ничтяково.

Тип транзистора в схеме на рисунке 2 выбирается из учета мощности нагрузки. Например, для питания усилка (особенно большой мощности), когда ток нагрузки велик, втыкают составной транзистор. Составной транзистор — это когда берут два (или больше) транзистора и коллектор или эмиттер одного подключают к базе другого, а оставшийся вывод первого транзистора соединяют с оставшимся выводом следующего. На рисунке ниже это намного понятнее:


Это составной транзистор

И это составной транзистор

Теперь ясно? Вся фишка в том, что у составного транзистора коэффициент передачи равен произведению коэффициентов передачи каждого транзистора. То есть берем два говяненьких транзистора с коэффициентом усиления, скажем, 100, делаем составной и получаем транзистор с коэффициентом передачи 10 000. Суть ясна?

Итак, для больших токов используют составные транзисторы, ну а для питания парочки микросхем подойдет транзистор средней и малой мощности. Даже 315-е работают вполне удовлетворительно.

Бывает ешчё куча всяких схем ПСН, но наиболее употребительные две вышерассмотренные. Ну понятно, наверное, чтобы получить напряжение обратной полярности, просто переворачиваем стабилитрон вверх ногами (на рис. 1), а транзистор втыкаем другого типа проводимости (рис. 2; был n-p-n, ставим p-n-p). Полярность кондеров тоже необходимо поменять, не забывая при этом поменять полярность входного напряжения.

Компенсационные стабилизаторы напряжения

Компенсационный стабилизатор напряжения (КСН) работает по иному принципу, нежели ПСН. Из названия видно, что КСН чего-то там компенсирует. В общем-то принцип действия КСН основан на изменении сопротивления регулирующего элемента в зависимости от управляющего сигнала. А вот и определение из книжки — КСН относятся к стабилизаторам непрерывного действия и представляют собой устройства автоматического регулирования, которые с заданной точностью поддерживают напряжение на нагрузке независимо от изменения входного напряжения и тока нагрузки. КСН бывают последовательного и параллельного типа. Для рывка рассмотрим структурную схему типичного КСН последовательного типа.

Рис. 3 — КСН последовательного типа

РЭ — это регулирующий элемент, в качестве которого чаще всего используется транзистор (биполярный или полевой), СУ — схема управления — собственно управляет работой РЭ. Иногда вместо СУ изображают усилитель постоянного тока (УПТ). Его задача — усилить сигнал рассогласования и подать его на РЭ. Д — делитель напряжения, ИОН — источник опорного напряжения. В качестве ИОН применяют схему параметрического стабилизатора. Источник опорного напряжения и делитель объединяют в так называемый измерительный элемент (ИЭ). Из-за включения РЭ последовательно с нагрузкой схема так и называется — последовательная.

Итак, источник опорного напряжения (ИОН) задает опорное напряжение, поступающее на вход СУ. С делителя часть выходного напряжения (соизмеримого с напряжением ИОН) также подается на вход схемы управления (СУ). В результате сравнения выходного напряжения (или его части) с опорным СУ управляет РЭ, сопротивление которого меняется в ту или иную сторону. Короче, если, к примеру, напряжение на входе скакнуло, эта фигня, естественно, передается на выход. Сигнал с делителя напряжения подается на схему управления и та, в свою очередь, сравнивая напряжение с ИОН, дает команду РЭ увеличить (уменьшить) сопротивление. В результате на нагрузке напряжение остается постоянным. Кроме того, измерительный элемент выделяет пульсации выпрямленного напряжения, поступающие на РЭ, который достаточно хорошо сглаживает их. При рассмотрении принципиальной схемы все станет ясней.

Параллельную схему КСН рассмотрим только в структуре. Ее изображение приведено на рисунке 4.

Рис.4 — КСН параллельного типа

Принцип действия такого стабилизатора основан на изменении проводимости РЭ (опять же, в соответствии с управляющим сигналом), вызывающее изменение падения напряжения на балластом резике. Эта схема хорошо работает при небольшом импульсном изменении тока нагрузки. Её основное достоинство — при импульсном изменении тока нагрузки не происходит изменения тока, потребляемого от сети.

Ну а теперь перейдем к самому главному: к схемам. Очень простая и понятная, так сказать, типичная схема приведена на рисунке 5.

Рис.5 — Принципиальная схема КСН.

Итак, разберем все деталюшки. Функции РЭ выполняет транзистор VT1. ИОН образован резиком R1 и стабилитроном VD1 (как видим, это параметрический стабилизатор). Делитель, соответственно, состоит из резиков R2-R4. На транзисторе VT2 собран усилитель постоянного тока (УПТ). ИОН задает для УПТ образцовое напряжение, которое вводится в цепь эмиттера транзистора VT2. На базу транзистора поступает напряжение с делителя. Если изменяется выходное напряжение, а соответственно, и напряжение на базе транзистора VT2, который сравнивая это напряжение с напряжением на эмиттере, задает РЭ такой режим работы, что сопротивление его перехода изменяется, и напряжение на нагрузке остается постоянным. С помощью резика R3 можно регулировать выходное напряжение.

В качестве регулирующего элемента при малом токе нагрузки (не больше 0,1-0,2 А) используются одиночные транзисторы. При больших токах нагрузки ставят составные и так называемые тройные составные транзисторы.

Такая схема обладает защитой от короткого замыкания (КЗ). При КЗ обесточивается стабилитрон VD1 и транзисторы VT1, VT2 закрываются. Правда злоупотреблять этим не следует (т. е. ради интереса замыкать плюс с минусом). Защита от КЗ кратковременная. Но работает!

На практике один из вариантов такой схемы можно встретить с резиком между коллектором и эмиттером РЭ. Он необходим для нормальной работы стабилизатора при отрицательных температурах. Иногда пишут, что резик, шунтирующий переход коллектор-эмиттер РЭ, служит для запуска стабилизатора. Ну в принципе, наверное, понятно, что для смены полярности необходимо поменять тип транзисторов, направление включения стабилитрона и, соответственно, полярность включения кондеров (на схеме не показаны).

Итак, практическая схема вышеописанного стабилизатора приведена ниже:

Эта схема содрана с блока питания магнитофона приставки «Карат МП-201С» и, как видно, отличие состоит лишь в кондерах и резике R1. Резиком R4 подстраивают выходное напряжение. Подбирая стабилитрон VD1 можно изменять выходное напряжение ( при изменении входного, соответственно). При этом надо менять сопротивление резика R1. Две черточки на его корпусе обозначают мощность, т. е. 2 Вт. При больших токах нагрузки резик R1 греется. Естественно, транзистор VT1 необходимо установить на радиатор, площадью хотя бы 50 см 2 , т. к. и он может «пыхнуть».

Одной из разновидностей схем такого рода является так называемая схема с «холодным» коллектором. Её отличием является то, что регулирующий транзистор включается в цепь общего провода, а не «горячего». А это значит, что изолировать транзистор от радиатора или радиатор от корпуса устройства не надо, чего не скажешь о схемах на рисунках 5 и 6. В этих схемах транзисторы вылетают, как с добрым утром, если забыли изолировать коллектор (для тех, кто в танке, коллектор мощных транзисторов электрически соединен с корпусом транзистора или его частью для лучшего теплового контакта). На рисунке 7 эта схема и показана. Схема слизана с журнала Радио аж за 1984 год (Радио №12/1984).

Рис. 7 — КСН с «холодным» коллектором

Как видно, практически никаких отличий от предыдущей схемы. В качестве регулирующего использован составной транзистор КТ827А. Его можно легко заменить двумя — КТ815 и КТ819. Недостаток схемы — меньший ток нагрузки, нежели у схемы на рисунке 6. Да к тому же для такого стабилизатора необходим отдельный выпрямитель . Другими словами, если нужно несколько стабилизаторов, то для каждого придется забабахать свой выпрямитель. Зато все регулирующие транзисторы можно поставить на один теплоотвод, не изолируя их.

Другие схемы не только по этой теме будут постепенно накапливаться в отдельном разделе; назовем его «каталог схем».

ПАРАМЕТРИЧЕСКИЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ

Как известно, ни одно электронное устройство не работает без подходящего источника питания. В самом простейшем случае, в качестве источника питания может выступать обычный трансформатор и диодный мост (выпрямитель) со сглаживающим конденсатором. Однако, не всегда под рукой есть трансформатор на нужное напряжение. Да и тем более, такой источник питания нельзя назвать стабилизированным, ведь напряжение на его выходе будет зависеть от напряжения в сети.

Вариант решения этих двух проблем – использовать готовые стабилизаторы, например, 78L05, 78L12. Они удобны в использовании, но опять-таки не всегда есть под рукой. Ещё один вариант – использовать параметрический стабилизатор на стабилитроне и транзисторе. Его схема показана ниже.

Схема стабилизатора на 1 транзисторе

VD1-VD4 на этой схеме – обычный диодный мост, преобразующий переменное напряжение с трансформатора в постоянное. Конденсатор С1 сглаживает пульсации напряжения, превращая напряжение из пульсирующего в постоянное. Параллельно этому конденсатору стоит поставить плёночный или керамический конденсатор небольшой ёмкости для фильтрации высокочастотных пульсаций, т.к. при большой частоте электролитический конденсатор плохо справляется со своей задачей. Электролитические конденсаторы С2 и С3 в этой схеме стоят с этой же целью – сглаживание любых пульсаций.

Цепочка R1 – VD5 служит для формирования стабилизированного напряжения, резистор R1 в ней задаёт ток стабилизации стабилитрона. Резистор R2 нагрузочный. Транзистор в этой схеме гасит на себе всю разницу входного и выходного напряжения, поэтому на нём рассеивается приличное количество тепла. Данная схема не предназначена для подключения мощной нагрузки, но, тем не менее, транзистор стоит прикрутить к радиатору с использованием теплопроводящей пасты.

Напряжение на выходе схемы зависит от выбора стабилитрона и значения резисторов. Ниже показана таблица, в которой указаны номиналы элементов для получения на выходе 5, 6, 9, 12, 15 вольт.

Вместо транзистора КТ829А можно использовать импортные аналоги, например, TIP41 или BDX53. Диодный мост допустимо ставить любой, подходящий по току и напряжению. Кроме того, можно собрать его из отдельных диодов. Таким образом, при использовании минимума деталей получается работоспособный стабилизатор напряжения, от которого можно питать другие электронные устройства, потребляющие небольшой ток. Фото собранного мной стабилизатора:

Печатная плата находятся в архиве. Автор – Дмитрий С.

Параметрические стабилизаторы напряжения для микроконтроллеров

Стабилизатор напряжения является важным звеном в любом источнике питания. От устойчивости и стабильности питающего напряжения во многом зависит надёжность работы и долговечность всего устройства.

Для питания МК обычно применяют стабилизаторы двух видов: параметрические на стабилитронах и компенсационные на интегральных микросхемах. Многочисленные разновидности транзисторных стабилизаторов напряжения, которые публиковались в 1980-х годах, сейчас уже не актуальны. Причина банальная — если нужно максимально дешёвое изделие, то ставят стабилитрон, а если нужен высокий коэффициент стабилизации и защита от перегрузок, то ставят малогабаритную интегральную микросхему.

Несмотря на простоту параметрических стабилизаторов напряжения, именно они хорошо отводят излишний ток, попадающий в цепь питания через входные диоды в стандартных схемах защиты линий портов МК (например, Рис. ЗЛО, б).

Следует учитывать, что низковольтные стабилитроны общего применения имеют «тестированный» ряд напряжений — 3.0; 3.3; 3.6; 3.9; 4.3; 4.7; 5.1; 5.6; 6.2; 7.5; 8.2; 9.1; 12 В при точности ±5 или ±10%. Минимальный ток стабилизации согласно даташитам может составлять 1; 3; 5 мА. Мощность рассеяния стабилитронов бывает 0.5; 1; 3; 5 Вт, что зависит от их габаритных размеров и материала корпуса (металл или пластмасса). У поверхностно монтируемых стабилитронов в SMD-корпусе мощность рассеяния составляет 0.25 и 0.5 Вт.

Параметрические стабилизаторы положительного напряжения выполняются по схемам, приведенным на Рис. 6.5, а. е. Их ядром служат двух- или трёхвыво-дные стабилитроны, иногда дополненные транзисторными усилителями тока.

Рис. 6.5. Схемы параметрических стабилизаторов напряжения (начало):

а) стандартный стабилизатор напряжения с балластным резистором R1 и стабилитроном VDI. Конденсаторы C1. СЗ снижают сетевые пульсации и ВЧ-помехи. Диод VD2 уменьшает выходное напряжение до необходимых +4.9. +5 В. Сопротивление резистора R1 должно быть таким, чтобы ток через стабилитрон VD1 находился в пределах ^ctmin-‘-^сгмах ,ю вс^м диа» пазоне входных напряжений, температур и токов нагрузки;

б) светодиод HL1 одновременно является индикатором наличия питания и частью стабилизатора напряжения. По яркости его свечения можно приблизительно судить о токе нагрузки. Важно, чтобы ток через индикатор HL1 всегда был меньше 20 мА, иначе следует увеличить сопротивление резистора R1 или поставить параллельно светодиоду резистивный шунт;

Рис. 6.5. Схемы параметрических стабилизаторов напряжения (окончание):

в) повышение коэффициента стабилизации за счёт генератора тока на полевом транзисторе VT1. Транзистор VT2 увеличивает отдаваемую в нагрузку мощность. Выходное напряжение +5 В меньше напряжения стабилизации VD1 на 0.6. 0.7 В из-за падения напряжения между базой и эмиттером транзистора VT2.

г) базовая схема включения трёхвыводного стабилитрона VDI. Его достоинства — повышенный до 800. 1000 коэффициент стабилизации и широкий диапазон тока нагрузки 1. 100 мА. При полном замыкании резистора R2 выходное напряжение равняется внутреннему опорному напряжению стабилитрона VD1 (2.5 В). Замена VD1 — любой трёхвыводной стабилитрон из серии «431» разных фирм-изготовителей;

д) стабилизатор напряжения с транзисторным усилителем тока. Выходное напряжение определяется по формуле = 1-25-(1 + R2 ,[кОм]/(R2 2[кОм] + /?3[кОм])) + 0.7, где R2, (R2 2) — это сопротивление между верхним и средним (нижним и средним) отводами резистора R2 после регулирования. Число «0.7» означает.напряжение Ub7) транзистора VTI в вольтах. Число «1.25» означает внутреннее опорное напряжение стабилитрона VD1 в вольтах. В качестве замены подойдут любые трёхвыводные стабилитроны из серии «1431». Также можно использовать стабилитроны с опорным напряжением 2.5 В из серии «431», заменив число «1.25» числом «2.5» в расчётной формуле для ишх;

е) мощный «параллельный» стабилизатор напряжения с балластным резистором R1 и шунтирующим транзистором VT1. Выходное напряжение устанавливается резистором R2.

Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.

голоса
Рейтинг статьи
Читайте так же:
Микросхема кр142ен12а как стабилизатор тока
Ссылка на основную публикацию