Для чего нужен трансформаторный счетчик
Подключение счетчика электроэнергии в низковольтную сеть большой мощности
В одной из предыдущих статей мы уже рассматривали измерительные трансформаторы тока, их сферы применения, технические характеристики и особенности режима работы.
Как отмечалось ранее, для подключения счетчика в сеть большой мощности (с большими токами) необходимо применять специальные устройства — измерительные трансформаторы тока. Речь идет о низковольтных сетях до 0,66 кВ, где уровень номинального тока 100 А и выше. Счетчики прямого включения не предназначены для использования в таких мощных сетях, поэтому и требуется снизить уровень рабочего тока до величины, удобной для измерения приборами учета — 5 А.
Способ подключения в сеть счетчика, при котором токовые обмотки счетчика подключаются к измерительным выводам трансформатора тока называют полукосвенным. При этом способе подключения счетчика используется рабочее напряжение сети (обмотки напряжения подключаются к электросчетчику напрямую).
Существует также и косвенный способ подключения счетчика, однако он применяется для учета электроэнергии в установках с напряжением более 1 кВ. При косвенном подключении счетчика кроме трансформаторов тока применяются трансформаторы напряжения, снижающие высокое значение напряжение до 100 В.
Класс точности и его значение для учета электроэнергии
Правила Устройства Электроустановок (сокращенно ПУЭ) устанавливают классы точности для трансформаторов тока различных категорий применений. Так, для коммерческого учета должны устанавливаться трансформаторы тока с классом точности не более 0,5, а для технического учета необходим класс точности не выше 1,0.
Также встречаются трансформаторы тока с практически одинаковыми классами точности 0,5 и 0,5S. В чем заключается между ними разница? Погрешность обмотки ТТ с классом точности 0,5 не нормируется ниже 5%. Это значит, что при нагрузке в главной цепи ниже 5% электрическая энергия не будет учитываться. Класс точности 0,5S говорит о том, что трансформатор тока будет передавать сигнал на счетчик при уровне нагрузки не ниже 1%.
Схемы подключения счетчика через трансформаторы тока
Подключить трехфазный счетчик электроэнергии в мощную низковольтную сеть с глухозаземленной нейтралью можно по приведенным ниже схемам.
Цепи тока и напряжения в этой схеме, которую еще называют «десятипроводной» (по количеству используемых проводов), разделены. Подобное разделение цепей напряжения и тока позволяет повысить электробезопасность и легко проверять правильность подключения.
Следующая схема, в которой все выводы И2 измерительных трансформаторов тока соединяются в общую точку и присоединяются к нулевому проводнику, называется «звезда» (т. к. трансформаторы тока соединены по одноименной схеме). Она экономична с точки зрения использования проводов, однако усложняет проверку схемы включения счетчика представителями энергоснабжающих организаций.
«Семипроводная» схема на сегодняшний день является устаревшей, но так или иначе до сих пор встречается. Эта схема, будучи самой экономичной, опасна для обслуживающего персонала и потому должна быть модернизирована до десятипроводной.
Подключения счетчика электроэнергии через переходную испытательную коробку (КИП)
Как указано в ПУЭ (п 1.5.23.), подключать трехфазные счетчики электроэнергии следует через испытательные коробки, упомянутые выше. Они (коробки испытательные переходные) позволяют производить замену счетчика, не отключая нагрузку, так как все необходимые переключения можно произвести в КИП.
Также встречаются низковольтные сети с изолированной нейтралью (система IT). Если быть более точным, то в сети с такой системой заземления нейтральный проводник может быть как полностью изолирован, так и заземлен при помощи специальных приборов, обладающих большим электрическим сопротивлением.
Такая система (IT) применяется на объектах, к которым предъявляются высокие требования по надежности и безопасности электроснабжения. Например, изолированная система IT применяется для электрических установок угольных шахт, для мобильных дизельных и бензиновых электростанций, а также для аварийного освещения и электроснабжения больниц. Подключить счетчик электроэнергии к трансформаторам тока в сеть с изолированной нейтралью можно по следующей схеме.
Измерительные трансформаторы тока — это устройства, преобразующие большие значения тока главных цепей до величины 5 А, удобной для измерения счетчиками электроэнергии. Именно это и определяет их основное назначение: питание цепей учета электроэнергии (коммерческий и технический) в мощных установках, там где счетчики прямого включения просто не могут применяться.
Назначение измерительных трансформаторов тока
При использовании различных энергетических систем возникает необходимость в преобразовании определенных величин в аналоги с пропорционально измененными значениями.
Такая операция позволяет воссоздавать процессы в электронных устройствах, гарантируя безопасные учет их потребления. Для этого используется специальное оборудование — трансформатор тока наружной установки.
Когда нужны трансформаторы тока?
Измерительные трансформаторы тока предназначены для замера характеристик, ограниченных номинальным напряжением. Последняя величина варьируется от 0.66 до 750 кВ. ТТ широко используются для различных целей:
- При отделении низковольтных учетных приборов и реле от первичного напряжения в сети, что обеспечивает безопасность электрослужбам во время ремонта и диагностики.
- Силами трансформаторов тока релейные защитные цепи получают питание. В случае короткого замыкания или проблем с режимами работы электроприборов ТТ обеспечивает корректную и оперативную активацию релейной защиты.
- Используются для учета электроэнергии с помощью счетчика.
На практике встречаются различные модели измерительных трансформаторов и в компактных электроприборах с малым корпусом, и в полноценных энергетических установках с огромными габаритами.
Классификация и расчет
Расчет и выбор трансформаторов тока следует начинать с изучения классификации представленных на рынке устройств. Все ТТ в первую очередь подразделяются на две категории в зависимости от целевого назначения:
- Для измерения показателя счетчика.
- Для защиты электрооборудования.
Эти же категории, в свою очередь, классифицируются на виды в зависимости от типа подключения:
- предназначенные для работы на открытом воздухе;
- функционирующие в закрытом помещении;
- используемые в качестве встроенных элементов электрооборудования;
- накладные, предназначенные для для проходного изолятора;
- переносные, дают возможность осуществлять расчет в любом месте;
Все трансформаторы тока могут иметь различный коэффициент трансформации, который получают при изменений количества витков первичной или вторичной обмотки. Также эти устройства различаются по количеству ступеней работы на одноступенчатые и каскадные.
Если рассматривать конструктивные особенности, то ТТ могут иметь различную по типу изоляцию:
- сухую, изготовленную из фарфора, бакелита или литой эпоксидной изоляции;
- бумажно-масляную;
- газонаполненную;
- залитую компаундом;
Также исходя из характеристик конструкции, выделяют катушечные, одновитковые и многовитковые ТТ с литой изоляцией.
Как выбрать трансформатор тока наружной установки для счетчика электроэнергии?
Расчет и выбор трансформаторов тока для счетчика следует начинать с анализа базовых параметров номинального тока:
- номинальное напряжение сети;
- параметр номинального тока первичной и вторичной обмотки;
- коэффициент трансформации;
- класс точности;
- особенности конструкции;
При выборе номинального напряжения устройства необходимо подбирать значение превышающие или идентичное максимальному рабочему напряжению. Если рассматривать вариант счетчика 0.4 кВ, то здесь потребуется измерительный трансформатор на 0.66 кВ.
Подключение счетчика через трансформаторы тока представлено на это фото
Значение номинального тока вторичной обмотки для того же счетчика, как правило, составляет 5 А. А вот с параметром для первичной обмотки нужно быть осторожнее. От этого значения зависит практически все подключение. Номинальный ток первичной обмотки формуется относительно коэффициента трансформации.
Последний следует выбирать по нагрузке с учетом работы в аварийных ситуациях. Согласно официальным правилам устройства электроустановок, допустимо подключение и использование трансформаторных устройств с завышенным коэффициентом трансформации.
Класс точности следует выбирать в зависимости от целевого назначения счетчика электричества. Коммерческий учет требует высокий класса точности — 0.5S, а технический учет потребления допускает параметр точности в 1S.
Говоря о конструкции ТТ, нужно учесть, что для счетчика с напряжением до 18 кВ используются однофазные или трехфазные ТТ. Для более высоких значений подойдут только однофазные конфигурации.
Как осуществляется подключение измерительного ТТ тока для счетчика?
Специалисты не рекомендуют осуществлять подключение счетчика с помощью трехфазного ТТ. Это обусловлено его несимметричной магнитной системой и увеличенной погрешностью. В этом случае оптимальным вариантом будет группа из 2 однофазных приборов, соединенных в неполный треугольник.
Подробнее изучить классификацию, базовые параметры и технические требования на подключение и расчет ТТ для счетчика электроэнергии можно в ГОСТ 7746-2001.
Условия и порядок пломбирования приборов учёта энергии
Зачастую бывает необходимо перенести прибор учёта электроэнергии в другое место, установить новый и демонтировать старый или вышедший из строя. Во время этих процедур целостность пломб на устройстве теряется, поэтому пломбирование счётчиков является неотъемлемой частью монтажа новой системы.
В каком случае опломбировка оплачивается?
В зависимости от ряда факторов процедура может быть как бесплатной, так и оплачиваемой. Важно знать, что является причиной проведения подобных работ:
- Пломбирование счётчиков по требованию. В случае первичной установки или замены прибора учёта по требованию энергоснабжающей компании процедура проводится за счет поставщика услуг. С хозяина жилища плата не взимается.
- Повторная опломбировка. Как по желанию потребителя, так и в силу причин, не зависящих от него (выход оборудования из строя, возгорание проводки), услуга должна оплачиваться владельцем помещения.
Порядок действий
Пломбирование электросчётчиков при замене прибора учёта по желанию собственника происходит в следующем порядке:
- Обращение в отделение поставщика электроэнергии по месту жительства.
- Подача письменного заявления при личном присутствии владельца помещения.
- Оплата услуги в отделении банка и получение чека.
После того, как прибор учёта электрической энергии будет опломбирован, сотрудник организации предоставит вам акт о проведённых работах, содержащий показания как старого, так и нового устройства. Помимо этого, в документе указывается место и дата монтажа, а также название организации, предоставившей услуги.
Виды и способы установки пломб
Существует два вида пломб для счётчиков электроэнергии:
- Пломбы, установленные производителем прибора. Их наличие гарантирует, что устройство не имеет механических дефектов, прошло тесты на работоспособность, а точность учета и прочие характеристики соответствуют указанным в паспорте данным. Стоит отметить, что если этот документ отсутствует, работники энергоснабжающей организации могут отказать в монтаже и опломбировке нового оборудования, так как информация о дате выпуска и поверки будет неизвестна. Заводская пломба крепится на болты корпуса прибора.
- Пломба, установленная поставщиком электрической энергии. Этот вид пломбы устанавливается специалистами энергоснабжающей организации в случае монтажа или замены счётчика. Пломбы крепятся на предохранительную крышку клемм подключения фазного и заземляющего провода. Если применяется трансформаторный способ включения, то крышку трансформатора также необходимо опломбировать. В качестве пломб используются как стандартные металлические или пластмассовые пломбы, так и специальные магнитные наклейки.
Кто может опломбировать электросчётчик?
Право на пломбирование имеют только сотрудники организаций, предоставляющих услуги электроснабжения. Стоит обратить внимание на тот факт, что в случае незаконного (несогласованного с компанией-поставщиком) снятия пломбы расчёт платы за электроэнергию будет производиться по усреднённым показателям с момента последней проверки до даты, когда нарушение было обнаружено. Жильцам многоквартирных домов необходимо подавать заявление на опломбировку либо напрямую в электросети, либо в организации, которые занимаются поставкой электрической энергии. Одной из таких компаний является АО «Мосэнергосбыт» — крупнейший поставщик электроэнергии в Москве и Московской области. Подробности о предоставляемых услугах, таких как первичный монтаж, замена или пломбирование счётчиков, вы можете узнать на сайте компании.
Электросчетчик трехфазный
Милур-304 трансформаторный
3-фазный трансформаторный электросчетчик переменного тока частотой 50 Герц. класс точности 0.5s при измерении активной мощности.
Производитель: Миландр
Интервал поверки : 16 лет
Преимущества Милур-304 трансформаторный:
— 0.5s класс точности по ГОСТ 31819.21-2012
— Измерение активной и реактивной энергии
— протокол передачи данных (Mod Bus)
— Гальванически развязанные интерфейсы
— Контроль вскрытия
— Исполнение трансформаторное
— Электронный журнал регистрации событий
Бесплатная доставка по Новосибирску
Возможно вам потребуется установка счетчика
Посоветовать друзьям
Милур-304 трансформаторный цена:
- Описание
- Характеристики
- Документация
3-фазный электросчетчик производства компании Миландр измеряет активную и реактивную электроэнергию в 4- проводных сетях переменного тока частотой 50 Герц. Данная модификация прибора предназначена для подключения счетчика к электросети через трансформаторы тока или напряжения и обеспечивает класс точности 0.5s при измерении активной мощности. Встроенная функция многотарифности позволяет организовать дифференцированый учета активной и реактивной электрической энергии в соответствии с тарифным расписанием.
Счетчик прошел испытания в ОАО «РЭС» и входит в список разрешенных электросчетчиков для установки. МИЛУР-304 может программироваться для ограничения мощности.
Основные параметры трехфазного электросчетчика
— Класс точности 0.5s
— Напряжение номинальное 3×57,7/100В
— Базовый ток 5 А
— Максимальный ток 10 А
Конструктивно счетчик состоит из следующих узлов: корпус, клеммная колодка, защитная крышка клеммной колодки, защитная крышка резервного питания и сигнальных цепей В качестве датчиков тока в счетчике используются токовые трансформаторы, в качестве датчиков напряжения используются резистивные делители, включенные в каждую параллельную цепь напряжения.
Измерительная часть счетчика выполнена на основе специализированного микроконтроллера,
разработанного в РФ для нужд аэро-космической отрасли.
Счетчик обеспечивает отображение следующей информации:
— потребление активной энергии по четырем тарифам
— потребление реактивной энергии по четыремтарифам
— суммарную активную и реактивную энергию по всем тарифам
— текущую активную мощность по каждой фазе и суммарное значение
— текущую реактивную мощность по каждой фазе и суммарное значение текущую
— полную мощность по каждой фазе и суммарное значение
— напряжение по каждой фазе
— ток по каждой фазе
— частоту сети
— даты и время
— сетевой адрес счетчика
Счетчик может эксплуатироваться автономно и в составе автоматизированных систем коммерческого учета электрической энергии (АСКУЭ) с заранее установленной программой и способом установки (коррекции) соответствующего тарифного расписания. Защита от пыли и воды IР51 по ГОСТ 14254.
Доступные интерфейсы счетчика:
Рис.1 Схема для подключения счетчика, предназначенного для включения через трансформатор тока
Рис.2 Схема для подключения счетчика, предназначенного для включения через трансформаторы тока и напряжения
Рис.3 Схема для подключения счетчика к трехфазной трехпроводной сети с помощью двух трансформаторов тока
Рис.4 Схема для подключения счетчика к трехфазной трехпроводной сети с помощью трёх трансформаторов напряжения и двух трансформаторов тока
Рис.5 Схема для подключения счетчика к трехфазной трехпроводной сети с помощью двух трансформаторов напряжения и двух трансформаторов тока