Двоично десятичный счетчик с предварительной установкой
Практическое занятие № 5. Разработка цифровых устройств с памятью
Задача 1. Разработка двоичного счётчика.
Разработать двоичный счётчик на микросхемах (К555ИЕ7 (SN74LS193) – группа №1; К555ИЕ5 (SN74LS93) – группа №2; К555ИЕ18 (SN74LS163) – группа №3; К555ИЕ17 (SN74LS169) – группа №4) с коэффициентом счёта, равным n∙3 (n – номер варианта). Описать работу схемы. Осуществить моделирование её работы.
Пример решения задачи 1. Вариант 31
Необходимо реализовать двоичный счётчик на микросхемах К555ИЕ7 (SN74LS193) с коэффициентом счёта Ксч=31∙3=93.
Микросхема К555ИЕ7(SN74LS193) представляет собой четырёхразрядный двоичный счётчик (рисунок 5.1).
Рисунок 5.1 – Условное обозначение микросхемы К555ИЕ7 (а) и SN74LS193 (б)
Выводы 15, 1, 10, 9 предназначены для предварительной установки счётчика при нулевом уровне сигнала на входе 11. Высокий уровень напряжения на входе 11 (+5В) исключает предварительную установку. Вход 5 используется для прямого счёта, а вход 4– для обратного. Сброс счётчика осуществляется при подачи высокого уровня напряжения на вход 14. Для увеличения разрядности счётчика используется выход 12 (≥15).
Одна микросхема может иметь максимальный коэффициент счёта, равный 16. Две последовательно соединённые микросхемы дадут коэффициент счёта, равный 256. Так как заданный коэффициент счёта Ксч=31∙3=93, то для построения счетчика-делителя с заданным коэффициентом счёта достаточно двух микросхем. Определим двоичный код заданного коэффициента счёта:
=128∙0+64∙1+32∙0+16∙1+8∙1+4∙1+2∙0+1∙1.
При поступлении 93-го импульса на вход микросхемы DD1 на выходах Qi микросхем DD1 и DD2 установятся следующие логические сигналы:
Так как сброс счётчиков в исходное (нулевое) состояние осуществляется сигналом высокого уровня, подаваемым на входы 14, то, объединив с помощью логического элемента 8И-НЕ (DD3) выходы Qiсчетчиков, на которых появятся логические единицы при поступлении на вход 93-го импульса, подадим результирующий сигнал с выхода DD3, предварительно проинвертировав его с помощью логического элемента 3И-НЕ DD4 на входы 14 микросхем DD1 и DD2.
В качестве DD3 можно использовать микросхему К555ЛА2 (74LS30D), в которой содержится один логический элемент 8И-НЕ;в качестве DD4 – микросхему К555ЛА4 (74LS10D), в которой содержится два логических элемента ЗИ-НЕ.
Модель разработанной схемы счётчика в среде Multisim (файл «Двоичный счётчик.ms11») приведена на рисунке 5.2. Данная схема осуществляет подсчёт 93-х импульсов и отображение их двоичного кода. С приходом 93-го импульса выходы счётчиков обнуляются и счёт возобновляется.
Рисунок 5.2–Модель двоичного счётчика с коэфициентом счёта Ксч=93
Задача 2. Разработка двоично-десятичного счётчика.
Разработать двоично-десятичный счётчик на микросхемах (К555ИЕ6 (SN74LS192) – группа №1; К555ИЕ9 (SN74LS160) – группа №2; К555ИЕ2 (SN74LS90) – группа №3; К555ИЕ20 (SN74LS390) – группа №4) с коэффициентом счёта, равным n∙3 (n – номер варианта). Описать работу схемы. Осуществить моделирование её работы.
Пример решения задачи 2. Вариант 31
Необходимо реализовать двоично-десятичный счётчик на микросхемах К555ИЕ6 (SN74LS1932 с коэффициентом счёта Ксч=31∙3=93.
Микросхема К555ИЕ6 (SN74LS192) по назначению выводов аналогична микросхеме К555ИЕ7 (SN74LS193) (рисунок 5.1). Однако подсчёт числа импульсов осуществляет в двоично-десятичном коде.
Одна микросхема может иметь максимальный коэффициент счёта, равный 10. Две последовательно соединённые микросхемы дадут коэффициент счёта, равный 100. Так как заданный коэффициент счёта Ксч=31∙3=93, то для построения счетчика-делителя с заданным коэффициентом счёта достаточно двух микросхем. Определим двоично-десятичный код заданного коэффициента счёта. При этом каждый из разрядов десятичного числа представляется двоичным кодом из четырёх разрядов:
=8∙1+4∙0+2∙0+1∙1;
=8∙0+4∙0+2∙1+1∙1.
При поступлении 93-го импульса на вход микросхемы DD1 на выходах Qi микросхем DD1 и DD2 установятся следующие логические сигналы:
Так как сброс счётчиков в исходное (нулевое) состояние осуществляется сигналом высокого уровня, подаваемым на входы 14, то, объединив с помощью логического элемента 8И-НЕ (DD3) выходы Qi счетчиков, на которых появятся логические единицы при поступлении на вход 93-го импульса, подадим результирующий сигнал с выхода DD3, предварительно проинвертировав его с помощью логического элемента 3И-НЕ DD4 на входы 14 микросхем DD1 и DD2.
В качестве DD3 можно использовать микросхему К555ЛА2 (74LS30D), в которой содержится один логический элемент 8И-НЕ;в качестве DD4 –микросхему К555ЛА4 (74LS10D), в которой содержится два логических элемента ЗИ-НЕ.
Модель разработанной схемы счётчика в среде Multisim (файл «Двоично-десятичный счётчик.ms11») приведена на рисунке 5.3. Данная схема осуществляет подсчёт 93-х импульсов и отображение их двоично-десятичного кода. С приходом 93-го импульса выходы счётчиков обнуляются и счёт возобновляется.
Для отображения двоично-десятичного кода воспользуемся семисегментными индикаторами DCD_HEX.
Рисунок 5.3 – Модель двоично-десятичного счётчика с коэффициентом счёта Ксч=93
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Счетчики импульсов
Счетчиком называют устройство, сигналы на выходах которого в определенном коде отображают число импульсов, поступивших на счетный вход. Используются для подсчета числа импульсов и деления частоты. Счетчики строятся на базе триггеров. Триггер Т-типа может служить примером простейшего счетчика, считающего до двух. Если соединить последовательно m триггеров, можно подсчитать в двоичном коде 2 m импульсов. Число m определяет число разрядов, а число 2 — основание системы счисления.
На практике могут использоваться различные системы счисления (коды). Символом счетчика на логических схемах служат буквы СТ (counter) и число, характеризующее систему счисления (2, 10, 2/10). основными эксплуатационными показателями счетчика являются его емкость и быстродействие. Быстродействие счетчика определяется двумя параметрами: разрешающей способностью tраз и временем установки кода счетчика tуст. Под разрешающей способностью понимают минимальное время между входными импульсами, при котором счетчик еще в состоянии их подсчитывать. Обратная величина
называется максимальной частотой счета. Время установки кода tуст равно времени между моментом поступления входного сигнала и моментом установки счетчика в новое устойчивое состояние. Быстродействие зависит от элементной базы счетчика и способов соединения отдельных микросхем между собой.
Классификация счетчиков. Цифровые счетчики классифицируются по следующим параметрам: используемой системе счисления (двоичные, десятичные, двоично-десятичные, в коде Джонсона); направлению счета (суммирующие, вычитающие, реверсивные); способу организации связей между разрядами (с последовательным переносом, с параллельным переносом, кольцевые).
Рассмотрим несколько примеров интегральных счетчиков.
Двоичный четырехразрядный счетчик встречается практически во всех сериях цифровых микросхем. Счетчик содержит 4 Т-триггера, выходы которых Q – Q3 образуют параллельный двоичный код состояния счетчика. За исходное состояние счетчика принимается такое, при котором все триггеры находятся в нулевом положении. Принудительная установка счетчика в исходное состояние осуществляется подачей сигнала лог.1 на вход сброса R. Таблица состояний счетчика имеет следующий вид:
Номер входного импульса | Q3 | Q2 | Q1 | Q |
Таким образом, счетчик имеет 16 состояний, т.е. его емкость N = 2 m = 16. Здесь m = 4 — число разрядов. На рис. 5.22 показаны условное обозначение такого счетчика, его внутренняя структура и временная диаграмма. Переворот триггера младшего разряда происходит по спаду входного импульса. Триггеры в разрядах соединены между собой последовательно, т.е. представляют собой схему с последовательным переносом. Такая схема логически наиболее проста, но обладает большой задержкой сигнала, особенно в тех случаях, когда последовательно срабатывает большое количество триггеров. Микросхемы позволяют последовательно наращивать емкость двоичных счетчиков кратно 4 разрядам.
В качестве примеров асинхронных двоичных счетчиков на рис.5.23 показаны микросхемы К155ИЕ5 и К555ИЕ19.
Первая в одном корпусе содержит одно и трехразрядные счетчики, а вторая — два четырехразрядных счетчика. Соединяя выход одного счетчика с входом другого (показано штрихами), можно наращивать разрядность. Сброс счетчиков К155ИЕ5 в исходное состояние производится подачей сигнала лог.1 на оба входа 2,3 одновременно.
В делителях частоты, в отличие от счетчиков, выводы могут браться не от всех разрядных триггеров. За счет этого можно повысить коэффициент пересчета (деления) микросхемы при том же количестве выводов корпуса.
Вычитающие двоичные счетчики строятся аналогично и отличаются от суммирующих только связями между разрядами. Последовательность состояний триггеров вычитающего счетчика обратна последовательности суммирующего: после исходного состояния 0000 четырехразрядный двоичный счетчик переходит в состояние 1111 и далее в последовательности от 16 состояния к 14, 13, 12 и т.д. до исходного.
В счетчиках с последовательным переносом задержка распространения сигнала возрастает с увеличением числа разрядов и в многоразрядном счетчике может быть значительной. Это является причиной двух недостатков таких счетчиков: сравнительно низкого быстродействия и возможности появления кратковременных ложных импульсов на выходах дешифраторов состояния счетчиков.
Максимальная частота счета последовательного счетчика
где m — число разрядов; tз — время задержки переключения одного триггера.
Для повышения быстродействия используют счетчики с параллельным переносом.
Счетчики с параллельным переносом состоят из синхронных Т или IK-триггеров. Счетные входные импульсы подаются одновременно на все счетные входы триггеров, но разрешение (синхронизация) срабатывания данного триггера зависит от состояния триггеров предыдущих разрядов. Задержка переключения всего счетчика равна задержке для одного триггера. В таких счетчиках кроме разрядных триггеров содержатся дополнительные логические элементы. При повышении числа разрядов растет сложность внутренних логических связей. На рис. 5.24 показана внутренняя структура 4-разрялиого счетчика с параллельным переносом. Триггер первого разряда счетчика переключается за каждым входным сигналом, но триггеры последующих разрядов переключаются лишь в том случае, если все предыдущие триггеры находятся в единичном состоянии.
Счетчики с параллельным переносом широко применяются в быстродействующих устройствах. Они обладают более высокой помехоустойчивостью, т.к. в паузах между входными импульсами триггеры счетчика, блокированы. Недостатками таких счетчиков является меньшая нагрузочная способность из-за наличия дополнительной внутренней нагрузки и трудность организации параллельного переноса при большом числе разрядов. Поэтому параллельный перенос обычно организуется только для ограниченного числа разрядов, обычно в пределах объема одной микросхемы, а наращивание дальнейшей разрядности происходит путем последовательного переноса между микросхемами. Примером синхронного двоичного счетчика может служить микросхема К561ИЕ10 — рис. 5.25. В корпусе этой микросхемы содержится два четырехразрядных двоичных счетчика с параллельным переносом. Счетчик может запускаться положительным перепадом по входу V при наличии лог.1 на входе С или отрицательным перепадом по входу С при наличии лог.1 на входе V. Штриховой линией показана организация 8-разрядного счетчика на базе микросхемы К561ИЕ10.
Реверсивный двоичный счетчик с предварительной установкой. Реверсивные счетчики позволяют осуществить подсчет входных импульсов как в режиме суммирования, так и в режиме вычитания в зависимости от состояния входа управления реверсом. Сигнал реверса переключает связи между триггерами разрядов счетчика. Предварительная установка позволяет устанавливать триггеры разрядов счетчика в желаемое состояние по установочным уходам. Примером такого счетчика является микросхема К561ИЕ11 — рис. 5.26. Микросхема имеет 4 установочных входа D1 – D4 и вход разрешения установки V. При подаче лог.1 на вход V происходит запись установочного кода со входов D1 – D4 в триггеры счетчика. Вход ± 1 служит для управления реверсом счетчика: при наличии лог.1 на этом входе счетчик работает в режиме сложения, а при лог.1 — в режиме вычитания. Вход С является счетным входом счетчика, а вход Р — входом сигнала переноса с микросхемы соседнего младшего разряда. Микросхема имеет 4 двоичных выхода и один выход сигнала переноса в микросхему старших разрядов. Асинхронное каскадирование счетчиков ИЕ11 получится, если сигнал переноса Р подать на вход С последующей микросхемы. Синхронное каскадирование получается, если соединить параллельно тактовые входы С всех микросхем и подать сигнал от выхода переноса Р первой микросхемы на вход переноса Р последующей (старшей разрядности) микросхемы.
Реверсивный двоично-десятичный счетчик. Для того чтобы образовать из двоичного счетчика двоично-десятичный, необходимо внутри микросхемы создать логическую цепь, которая бы зафиксировала переход счетчика в 11-е (по счету) состояние 1011 и сразу же сбросила триггеры микросхемы в исходное состояние 0000. Тем самым, число состояний двоичного счетчика ограничивается 10. Сигналы на выходе двоично-десятичного счетчика чередуются в порядке двоичной последовательности 8421 от первой комбинации 0000 до десятой 1010. На рис.5.27 показан реверсивный двоично-десятичный счетчик с предварительной установкой К561ИЕ14. Сброс в нулевое состояние такого счетчика происходит путем предварительной установки кода 0000 по входам D1 – D4. По сигналу высокого уровня на входе 2/10 счетчик работает как двоичный, а при низком уровне — как двоично-десятичный. Режимы работы микросхемы в зависимости от состояния управляющих сигналов представлены в следующей таблице:
Входы | Режим работы | ||
V | ±1 | C | 2/10 |
X | X | Хранение | |
Суммирование в двоичном коде | |||
Суммирование в двоично-десятичном коде | |||
Вычитание в двоичном коде | |||
Вычитание в двоично-десятичном коде | |||
X | X | X | Параллельная установка |
Знаком X в таблице обозначено произвольное состояние входа.
Счетчик-делитель на 8 состояния с дешифратором показан на рис. 5.28. Этот счетчик содержит в своем составе 4 триггера, меняющих состояние в соответствии с кодом Джонсона. 8 состояний счетчика расшифрованы при помощи встроенного дешифратора, так что микросхема имеет 8 информационных выходов 0 ¸ 7 и выход переноса Р. Сигнал на каждом информационном выходе возникает тогда, когда счетчик устанавливается в соответствующее состояние. В зависимости от соотношения сигналов V и С на входах можно выбрать фронт счетного импульса, по которому происходит счет. Вход сброса R всегда имеет приоритет по отношению к другим входам. В связи с тем, что в счетчике использован код Джонсона, сигнал переноса Р имеет скважность, равную 2. Если требуется уменьшить коэффициент пересчета в пределах одной микросхемы, достаточно соединить вход сброса R с надлежащим информационным выходом. При наращивании микросхем, с целью получения больших коэффициентов деления, кратных 8, выход Р микросхемы младшего разряда соединяют со входом С соседнего старшего разряда.
Десятичный счетчик с дешифратором, например, К561ИЕ8 отличается от счетчика-делителя на 8 лишь наличием 5 триггеров и соответственно 10 выходов — рис. 5.29.
Делители могут работать только, в режиме деления частоты, поэтому имеют один выход. Иногда делители имеют несколько выходов, но все равно не от всех разрядов счетчика. Микросхема может иметь жесткий коэффициент деления или перестраиваемый коэффициент. В последнем случае он устанавливается предварительной установкой состояния разрядных триггеров делителя. Например, коэффициент деления делителя 564ИЕ15 может быть установлен от 3 до 21327 с шагом единица. Этот делитель может работать в двух режимах: непрерывного счета (деления), когда на выходе образуются импульсы с частотой fвх/Kдел и длительностью, равной периоду входных импульсов, или однократного счета, когда после поступления на вход определенного числа импульсов выходной сигнал из состояния 0 переходит в состояние 1 и остается в этом состоянии.
Двоично десятичный счетчик с предварительной установкой
Микросхема К155ИЕ9 (74160) — декадный двоично-десятичный счетчик. Он запускается положительным перепадом тактового импульса и имеет синхронную загрузку (предварительную установку каждого триггера). Несколько счетчиков К155ИЕ9 (74160) образуют синхронный многодекадный счетчик. Сброс всех триггеров асинхронный по общему входу сброса R .
Принципиальная схема высокоскоростного синхронного счетчика отличается внутренней логикой ускоренного переноса и тем, что все триггеры получают перепад тактового импульса одновременно. Изменения выходных состояний триггеров совпадают по времени, поэтому в выходных импульсных последовательностью нет пиковых помех (клыков). Запускающий тактовый фронт импульса — положительный, причем для вариапта этой микросхемы с переходами Шотки буферный элемент тактового входа имеет порог Шмитта с гистерезисом + 400мВ , что уменьшает чувствительность к импульсным помехам, а также обеспечивает устойчивое переключение триггеров при медленно нарастающем перепаде тактового импульса.
Счетчик К155ИЕ9 (74160) — полностью программируемый, поскольку на каждом из его выходов можно установить требуемый логический уровень. Такая предварительная установка происходит синхронно с перепадом тактового импульса и не зависит от того, какой уровень присутствует на входах разрешения счета СЕР и CET Напряжение низкого уровня, поступившее на вход параллельной загрузки PE , останавливает счет и разрешает подготовленным на входах D0 — D3 данным загрузиться в счетчик в момент прихода следующего перепада тактового импульса (от низкого уровня к высокому).
Сброс у счетчика К155ИЕ9 (74160) — асинхронный. Если на общий вход сброса R поступило напряжение низкого уровня, на выходах всех четырех триггеров устанавливаются низкие уровни независимо от сигналов на входах С, PE , СЕТ и СЕР. Внутренняя схема ускоренного переноса необходима для синхронизации многодекадной цепи счетчиков К155ИЕ9. Специально для синхронного каскадирования микросхема имеет два входа разрешения: СЕР (параллельный) и CET (вспомогательный, с условным названием «трюковый»), а также выход ТС (окончание счета).
Счетчик считает тактовые импульсы, если на обоих его входах СЕР и СЕТ напряжение высокого уровня. Вход СЕТ последующего счетчика получает разрешение счета в виде напряжения высокого уровня от выхода ТС предыдущего счетчика. Длительность высоких уровней на выходе ТС примерно соответствует длительности высокого уровня на выходе Q0 предыдущего счетчика. На рисунке показана схема соединения четырех микросхем К155ИЕ9 в быстрый синхронный 16-разрядный счетчик.
Для счетчиков К155ИЕ9 (74160) не допускаются перепады от высокого уровня к низкому на входах СЕР и СЕТ, если на тактовом входе присутствует напряжение низкого уровня. Нельзя подавать положительный перепад на вход PE , еели на тактовом входе присутствует напряжение низкого уровня, а на входах СЕР и СЕТ — высокого (во время перепада или перед ним). Сигналы на входах СЕР и СЕТ можно изменять, если на тактовом входе С присутствует напряжение низкого уровня. Когда на входе PE появляется высокий уровень, а входы СЕ не активны (т, е. не используем СЕР и СЕТ и на них остается низкий уровень), то вместе с последующим положительным перепадом тактового импульса на выходах Q0 — Q3 появится код от входов D0 — D3.
Запуская напряжениями высокого уровня входы СЕТ и СЕР во время низкоуровневой части такового периода, получим на выходах наложение кодов загрузки и внутреннего счета. Если во время низкоуровневой части периода тактовой последовательности на входы СЕТ, СЕР и PE поданы положительные перепады, нарастающие от низкого уровня к высокому, тактовый перепад изменит код на выходах Q0 — Q3 на последующий.
При входных сигналах высокого уровня счетчик К155ИЕ9 (74160) потребляет ток питания 94 мА, К555ИЕ9 (74 LS169A) 32 мА; если все выходные сигналы имеют низкий уровень, то 101 и 32 мА соответственно. Максимальная частота счета 25 МГц. Время распространения сигнала от входа С до выхода ТС («Счет закончен») составляет 35 и 27 нс, а время сброса (от входа R до выходов Q) 38 и 28 нс для обычного исполнения и варианта Шотки.
Режим работы счетчика К155ИЕ9 (74160) можно выбрать согласно таблице. На выходе ТС появится напряжение высокого уровня, если выходной код счетчика ВННВ (т. е. 9), а на входе CET напряжение высокого уровня.
Режим работы счётчика К155ИЕ9
Зарубежным аналогом счётчика К155ИЕ9 является микросхема 74160.
ElectronicsBlog
Обучающие статьи по электронике
Микросхемы счётчики
Всем доброго времени суток! Сегодня буду рассказывать про счётчики, но не электрические или газовые, а про цифровые микросхемы счётчики. Счётчики являются, как и регистры, производными от триггеров, но в отличие от микросхем регистров, в микросхемах счётчиках связи между триггерами значительно сложнее и в результате функционал их больше, чем регистров.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Из самого названия данного типа цифровых микросхем понятно, что они занимаются подсчётом импульсов пришедших на их входы. То есть каждый пришедший импульс на вход счётчика увеличивает или уменьшает двоичный код на его выходах. Счётчики могут работать в различных режимах, которые определяется связями внутренних триггеров. Режим, в котором идёт увеличение выходного кода, называют режимом прямого счёта, а если идёт уменьшение выходного кода, то это режим обратного или инверсного счёта. Счётчики предназначены также для преобразования из двоичной системы счисления в десятичную систему, но существуют и другие типы счётчиков, например счётчики-делители, у которых на выходе частота импульсов в некоторое количество раз меньше частоты входных импульсов. Для микросхем счётчиков в стандартных сериях существует специальный суффикс ИЕ, например К555ИЕ19, К155ИЕ2.
Все типы счётчиков можно разделить на три основные группы, которые различаются быстродействием:
- асинхронные (или последовательные) счётчики;
- синхронные счётчики с асинхронным переносом (или параллельные счётчики с последовательным переносом);
- синхронные (или параллельные) счётчики.
Асинхронные счётчики
Данные типы счётчиков состоят из цепочёк JK-триггеров, которые работают в счётном режиме, когда выход предыдущего триггера служит входом для следующего. В такой схеме триггеры включаются последовательно, а, следовательно, и выходы счётчика также переключаются последовательно, один за другим (отсюда второе название асинхронных счётчиков – последовательные счётчики). Так как переключение разрядов происходит с некоторой задержкой, поэтому и сигналы на выходах счётчика появляются не одновременно с входным сигналом и между собой, то есть асинхронно.
Микросхемы асинхронных счётчиков применяются не очень часто, в качестве примера можно привести микросхемы типа ИЕ2 (четырёхразрядный двоично-десятичный счётчик), ИЕ5 (четырёх разрядный двоичный счётчик) и ИЕ19 (сдвоенный четырёхразрядный счётчик).
Асинхронные счётчики: слева направо ИЕ2, ИЕ5, ИЕ19.
Данные типы счётчиков имеют входы сброса в нуль (вход R), вход установки в 9 (вход S у ИЕ2), счётный или тактовый вход (вход С) и выходы, которые могут обозначаться как номера разрядов (0, 1, 2, 4) или как вес каждого разряда (1, 2, 4, 8).
Микросхема К555ИЕ2 относится к двоично-десятичным счётчикам, то есть счёт у неё идет от 1 до 9, а потом выводы обнуляются и счёт идёт сначала. Внутренне данный счётчик состоит из четырёх триггеров, которые разделены на две группы: один триггер (вход С1, выход 1) и три триггера (вход С2, выходы 2, 4, 8). Такая внутренняя организация позволяет значительно расширить применение данного типа микросхемы, например данную микросхему можно использовать в качестве делителя на 2, на 5 или на 10. Счётчик ИЕ2 имеет два входа для сброса в нуль объединенных по И, а так же два входа для установки в 9 тоже объединённых по И.
Для реализации счёта необходимо сбросить счётчик подачей на входы R высокого логического уровня, а на один из входов S сигнал низкого уровня. В таком режиме счётчик будет «обнулён» и последовательный счёт заблокирован. Чтобы восстановить функцию счета необходимо установить на входы R низкий уровень сигнала.
Для организации делителя на 2 необходимо подавать сигнал на С1, а снимать с выхода 1; делитель на 5 подавать сигнал на С2, а снимать с выхода 8; делитель на 10 выход 8 соединяют с С1, сигнал подают на С2, а снимают с выхода 1.
Микросхема К555ИЕ5 представляет собой двоичный счётчик, в отличие от ИЕ2 считает до 16 и сбрасывается в нуль. Также как и ИЕ2 состоит из двух групп триггеров со входами С1 и С2, а выходы 1 и 2,4,8. В отличии от ИЕ2 имеет только два входа сброса в нуль, а входов установки нет.
Микросхема К555ИЕ19 практически идентична двум микросхемам К555ИЕ5 и представляет собой два чётырёхразрядных двоичных счётчика, каждый счётчик имеет свой счётный вход С и вход сброса R. Если объединить выход 8 первого счётчика и вход С второго счётчика, то можно получить восьмиразрядный двоичный счётчик.
Синхронные счётчики с асинхронным переносом
Синхронные счётчики в отличие от асинхронных переключение разрядов идёт без задержки, то есть параллельно. Эта параллельность достигается за счёт более сложной внутренней связи между триггерами. Но также это привело к тому, что управлять данными счётчиками несколько сложнее, чем асинхронными. Зато возможностей у синхронных счётчиков значительно больше. Для увеличения разрядности синхронных счётчиков в данных типах счётчиков используется специальные выходы. От принципа формирования сигнала на этих выходах синхронные счётчики делятся на счётчики с асинхронным (последовательным) переносом и счётчики с синхронным (параллельным) переносом.
Основная суть работы синхронных счётчиков с асинхронным переносом заключается в следующем: переключение разрядов осуществляется одновременно, а сигнал переноса вырабатывается с некоторой задержкой. Быстродействие данных счётчиков выше, чем асинхронных, но ниже чем чисто синхронных. Типичными представителями синхронных счётчиков с асинхронным переносом являются микросхемы К555ИЕ6 и К555ИЕ7.
Синхронные счётчики с асинхронным переносом: слева направо ИЕ6, ИЕ7.
Микросхемы ИЕ6 и ИЕ7 полностью одинаковы различие заключается в том, что ИЕ6 является двоично-десятичным счётчиком, а ИЕ7 – полностью двоичным. Данные счётчики являются реверсивными, то есть могут работать как на увеличения числа, так и на уменьшение, для этого они имеют счётные входы: +1 (увеличение по положительному фронту) и -1 (уменьшение по положительному фронту). Для выхода сигнала переноса при прямом счёте используется выход CR, а при обратном счёте вывод BR. Вход R является входом обнуления счётчика. Также есть возможность предварительной установки выходного кода параллельным переносом с входов D1, D2, D4, D8 при низком логическом уровне на входе WR.
После сброса счётчик начинает считать с нуля, либо с числа, которое установлено параллельным переносом. Двоично-десятичный счётчик считает до десяти, потом обнуляется и вырабатывает сигнал переноса на выходе CR или BR при обратном счёте. Двоичный счётчик же считает до 15 и происходит обнуление.
Синхронные счётчики с асинхронным переносом нашли более широкое применение, чем асинхронные счётчики: делители частоты, подсчёт импульсов, измерение интервалов времени, формировать последовательности импульсов и другое.
Синхронные счётчики
Данные типы счётчиков являются наиболее быстродействующими, однако это обуславливает самое сложное управление среди всех типов счётчиков. Одной из особенностей синхронных счётчиков является то, что сигнал переноса вырабатывается тогда, когда все выходы счётчика устанавливаются в единицу (при прямом счёте) или в нуль (при обратном). Также при включении нескольких счётчиков для увеличения разрядности, тактовые входы С объединяются, а сигнал переноса подается на вход разрешения счёта каждого последующего счётчика.
В серии микросхем входят несколько типов синхронных счётчиков, которые различаются способом счёта (двоичные или двоично-десятичные, реверсивные или нереверсивные) и управляющими сигналами (отсутствие или наличие сигнала сброса). Все счётчики данного типа имеют входы переноса и каскадирования.
Синхронные счётчики: слева направо ИЕ9(ИЕ10) и ИЕ12(ИЕ13).
Микросхемы К555ИЕ9 (ИЕ10) микросхемы различаются способом счёта ИЕ9 – двоично-десятичная, а ИЕ10 – двоичная. Данные микросхемы имеют счётный вход С, вход сброса R в нуль выходных выводов. Имеется возможность предварительной установки при нулевом уровне напряжения на входе разрешения предварительной установи EWR, вход Е0 – разрешение переноса и вход Е1 – разрешения счёта. Сигнал на выходе CR (сигнал переноса) вырабатывается при достижении максимального счёта и высоком уровне на входе Е0. Для работы счётчика должны быть высокие логические уровни на входах EWR, Е0 и Е1.
Микросхемы К555ИЕ12 (ИЕ13) также имеют одинаковое схемотехническое устройство и различаются способом счёта ИЕ12 – двоично-десятичный счётчик, а ИЕ13 – десятичный. Данные типы счётчиков реверсивные и допускают как прямой счёт, установкой нулевого уровня на входе Е0, так и обратный счёт, установкой высокого логического уровня на Е0, в остальном же входные и выходные выводы идентичны ИЕ9 и ИЕ10.
Синхронные счётчики нашли самое широкое применение в цифровых устройствах, так они могут полностью заменить функционал асинхронных и синхронных с асинхронным переносом счётчиков и к тому же имеют самое высокое быстродействие среди счётчиков.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Разработка двоично-десятичного счетчика с предварительной установкой
Страницы работы
Содержание работы
2. Аналитический обзор
3. Конкретизация технического задания
4. Выбор и описание работы элементной базы
5. Синтез структурной схемы
6. Анализ структурной схемы
7. Разработка электрической схемы и описание её работы
9. Список использованной литературы
Микросхемотехника – раздел микроэлектроники, охватывающий разработку и исследование схемотехнических решений (принципиальных и структурных схем), используемых в интегральных микросхемах.
Целью разработки новых электрических схем элементарных логических элементов, таких как: И, И-НЕ, ИЛИ, и другие, является увеличение их быстродействия, понижение потребляемой мощности и занимаемой площади кристалла, улучшение других статических и динамических параметров.
Задачей создания структурных схем сложных устройств (комбинационного типа, последовательностного типа, ОЗУ и других) является простота схемы и минимизация количества ЛЭ, так как от этого напрямую зависят параметры проектируемых устройств.
2.Аналитический обзор.
Счётчиком называют устройство, предназначенное для подсчёта числа импульсов, поступающих на его вход, и хранения результата счёта в виде кода. Счётчики импульсов широко применяются в измерительной технике и в устройствах цифровой обработки информации.
2.1Основы построения счётчиков.
Счётчики импульсов выполняются на основе триггеров, образующих двоичные разряды. Количество разрядов определяется наибольшим числом, которое должен зафиксировать счётчик. В n-разрядном счётчике имеется один вход для счёта импульсов и n выходов для выдачи кода числа подсчитанных импульсов.
Триггер это электронная схема, имеющая два устойчивых состояния, которые устанавливаются при подаче соответствующей комбинации сигналов на управляющие входы триггера и сохраняются в течение заданного времени после окончания действия этих сигналов.
По функциональному признаку триггеры подразделяются на RS, JK, D, T и др. В зависимости от схемы управления триггеры делятся на синхронные и асинхронные. Асинхронные триггеры имеют только информационные входы, и в них запись информации осуществляется в момент её поступления. В синхронных триггерах запись информации, поступившей на информационные входы, происходит только при поступлении на синхронизирующий вход дополнительного импульса. Синхронные триггеры делятся в свою очередь на синхронизируемые уровнем и синхронизируемые фронтом.
2.2Основные параметры и классификация счётчиков.
Основными параметрами счётчиков являются их информационная ёмкость, или коэффициент пересчёта , и быстродействие. Коэффициент пересчёта определяется максимальным числом импульсов, которое может быть подсчитано данным счётчиком, и зависит от количества разрядов. При одном разряде
, при двух –
, при n разрядах
. После поступления на n-разрядный счётчик
импульсов он обнуляется. Следовательно, в таком счётчике может длительное время сохраняться информация о (
) или меньшем числе подсчитанных импульсов. Быстродействие счётчика определяется двумя величинами: разрешающей способностью и временем установки очередного состояния. Разрешающая способность
(
— частота следования входных импульсов) определяется минимально допустимым временным интервалом между двумя входными импульсами, при котором не происходит потери счёта (сбоя). Время установки представляет собой интервал времени между поступлением импульса на вход счётчика и переходом его в новое состояние.
По целевому назначению счётчики подразделяются на простые и реверсивные. Простые счётчики могут быть суммирующими или вычитающими. В суммирующих счётчиках каждый вновь поступающий на его вход импульс увеличивает показания счётчика на единицу, а в вычитающих – уменьшает на единицу. Реверсивные счётчики могут работать в обоих режимах: суммирования и вычитания.
По способу переключения триггеров во время счёта импульсов счётчики подразделяются на асинхронные и синхронные. В асинхронных счётчиках переход каждого триггера (разряда) из одного состояния в противоположное происходит сразу же после изменения сигналов на его управляющих входах. В синхронных счётчиках переключение триггеров при наличии соответствующих сигналов на управляющих входах происходит только в моменты поступления синхронизирующих импульсов.
По коэффициенту пересчёта, или по модулю счёта счётчики делятся на двоичные с и недвоичные с
, при
счётчик называется десятичным (n – целое число, n>0).
По способу организации цепей переноса информации между разрядами различают счётчики с последовательным, сквозным и параллельным переносами.