Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Импульсный стабилизатор тока что это

Импульсный стабилизатор тока из стабилизатора напряжения

Здесь можно немножко помяукать 🙂

Импульсный стабилизатор тока из стабилизатора напряжения

Пн мар 29, 2021 16:38:39

Решил сделать стабилизатор тока из «народного» модуля стабилизатора напряжения.
Модуль:
https://aliexpress.ru/item/400025940399 . 1054452173
Есть хороший обзор модуля:


Схему модифицировал как в аттаче к сообщению.
Ожидал хорошей стабилизации, но почему то имею при практическом воплощении и токе на выходе в 1.2А (среднем) в диапазоне при напряжении от 2В до 10В рост тока с повышением напряжения. Не много, но порядка 70мА-80мА. То есть где то в пределах 6%.
Вроде бы как не много, но какова причина такой стабилизации?
Резистор 0.1Ом 2Вт, не прецизионный с низким температурным коэффициентом, но ток то не меняется существенно и резистор не греется, на нем всего 0,144Вт излучается.
TL431 и сама крайне стабильна, к тому же питается от 12В, а не выхода, где напряжение «скачет».
У кого есть версии к объяснению и можно ли это исправить? Вложения circute.PNG Модификация схемы готового модуля (23.58 KiB) Скачиваний: 160

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Пн мар 29, 2021 16:43:10

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Пн мар 29, 2021 17:00:41

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Пн мар 29, 2021 19:45:44

Боюсь проблема поглубже. Я её не смог решить. у меня вообще при изменении нагрузки графики напряжения не совпадали при изменении вниз и вверх. А ШИМ он ШИМ — проблема в системе обратно связи. Например у 3843 есть некая проблема при переходе скважности через 2 (или 50%) настроить ОС удавалось только в диапазоне заполнения 0-50% или 50-95%.

По крайней мере надо смотреть длительность открытия ключа.

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Пн мар 29, 2021 20:11:48

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Пн мар 29, 2021 21:34:36

Логично, но «фишка» задачи состояла ограничиться минимумом деталей и минимумом переделок готового модуля, воспринимая его как одну ИМС. Настраивать ШИМ уже выходит за рамки задуманного.

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Пн мар 29, 2021 22:06:53

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Пн мар 29, 2021 22:08:40

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Вт мар 30, 2021 11:41:22

mikes357 , за ссылки спасибо, посмотрел, но ничего нового по сути своего вопроса не увидел. По одной ссылке делали регулируемый стабилизатор напряжения из модуля. По другой тока, но человек применил неинвертирующий усилитель на операционнике. На свой вопрос ответа там нет.

Agaev , с BST все понятно, зачем эта цепочка. Ее трогать точно не нужно. А вот с ААМ совсем не понятно. Вот что в даташите:
A resistor is connected from AAM pin to ground to set a AAM voltage force MP2315 into
non-synchronous mode when load is small. Drive AAM pin high (=VCC) will force
MP2315 into CCM.
Нужно будет «понюхать» куда с первого контакта чипа, что к чему подключено по факту на плате. Чип-то синхронный преобразователь, почему про асинхронный режим речь идет, пусть и при малых нагрузках?



Re: Импульсный стабилизатор тока из стабилизатора напряжения

Вт мар 30, 2021 17:45:41

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Вт мар 30, 2021 21:52:46

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Вт мар 30, 2021 23:09:34

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Вт мар 30, 2021 23:16:28

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Вт мар 30, 2021 23:25:13

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Вт мар 30, 2021 23:29:40

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Вт мар 30, 2021 23:34:49

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Ср мар 31, 2021 02:20:52

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Ср мар 31, 2021 09:09:58

Вы не поняли работу схемы. Так работать не будет.

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Ср мар 31, 2021 10:00:48

Re: Импульсный стабилизатор тока из стабилизатора напряжения

Ср мар 31, 2021 10:38:08

Powered by phpBB © phpBB Group.

phpBB Mobile / SEO by Artodia.

  • Список форумов
    • Наша команда
    • Удалить cookies форума
    • Часовой пояс: UTC + 3 часа
  • #
    • Страница 1 из 21 , 2
    • След.

Зачем делают импульсные стабилизаторы напряжения.

Рассказано о назначении стабилизаторов, основных типах – линейных и импульсных, достоинствах и недостатках. Показаны испытания и результаты.

Для наглядности рассмотрим структурную схему, из анализа которой, назначение стабилизатора становится наиболее понятным.

Допустим, для питания нагрузки нужно постоянное напряжение 5В. Мы можем сделать выпрямитель, который из напряжения сети сформирует постоянное напряжение 5В при напряжении сети 230В. Но напряжение сети может изменяться и если не предпринять никаких мер, то и напряжение на выходе выпрямителя отклонится от нужного значения 5В. Для того, чтобы этого не произошло, нужен стабилизатор. Отсюда основная задача стабилизатора – поддерживать неизменное напряжение на выходе при изменении входного. Стабилизатор еще выполняет и другие функции, а именно, поддерживает постоянным напряжение в нагрузке при изменении тока в ней и уменьшает пульсации выпрямленного напряжения.

Наиболее простыми являются линейные стабилизаторы. Их принцип работы понятен из приведенной ниже схемы.

Читайте так же:
Расчет стабилизаторов напряжения постоянного тока

При отклонении напряжения на выходе от нормы с делителя напряжения R2, R3 на регулирующий элемент R1 подается управляющий сигнал. R1 изменяет свое сопротивление до тех пор, пока напряжение на выходе не придет в норму. Понятно, что разница между входным и выходным напряжением падает на R1, при больших токах это приводит к выделению значительной мощности и понижает КПД линейного стабилизатора. В качестве R1, как правило, используется транзистор. Для обеспечения его работы в схеме есть источник образцового напряжения (стабилитрон) и усилитель сигнала ошибки. Схемы линейных стабилизаторов выполняются на отдельных элементах и в виде микросхем. Наиболее распространены микросхемы серии 7805, 7808, 7812, КР142ЕН5 и т.д. Подробнее можно посмотреть здесь и здесь.

Ниже приведены результаты испытаний линейного стабилизатора напряжения на микросхеме 7805. Напряжение на входе 7,3В, ток 1,08А. Напряжение на выходе 5,1В, ток 1,01А. Пульсации на осциллографе, подключенном к нагрузке, отсутствуют. Мощность на входе равна 7,3В х 1,08А = 7,9Вт. Полезная мощность в нагрузке равна: 5,1В х 1,01А = 5,2Вт. КПД = 5,2 : 7,9 = 0,66 или 66%.

Напряжение на входе 19В, ток 1,08А. Напряжение на выходе 5,1В, ток 1,02А. Пульсации на осциллографе практически отсутствуют. Мощность на входе равна 19В х 1,08А = 20,5Вт. Полезная мощность в нагрузке равна: 5,1В х 1,02А = 5,2Вт. КПД = 5,2 : 20,5 = 0,25 или 25%.

Чтобы повысить КПД стабилизаторов широко используются импульсные стабилизаторы. Принцип их работы заключается в том, что постоянное входное напряжение преобразуется в импульсное, с частотой от десятков до сотен кГц. Это импульсное напряжение на выходе с помощью индуктивности, диода и конденсатора фильтра снова преобразуется в постоянное напряжение. Величина напряжения на выходе зависит от длительности импульсов и поддерживается постоянной за счет обратной связи управляющей длительностью импульсов генератора. Структурная схема импульсного стабилизатора приведена ниже.

Мощный ключ VT1 в такой схеме имеет два устойчивых состояния – полностью открыт или полностью закрыт. При этом величина выходного напряжения прямо пропорциональна времени открытого состояния ключа. Падение напряжения на нем минимально, и он практически не греется, что существенно повышает КПД таких стабилизаторов. Подробнее о работе импульсных стабилизаторов можно посмотреть здесь .

Ниже приведены результаты испытаний импульсного стабилизатора напряжения на микросхеме 2576Т-5,0.

Напряжение на входе 7,5В, ток 0,84А. Напряжение на выходе 5,В, ток 0,98А. Мощность на входе равна 7,5В х 0,84А = 6,3Вт. Полезная мощность в нагрузке равна: 5 В х 0,98А = 4,9Вт. КПД = 4,9 : 6,3 = 0,78 или 78%. Как видно на осциллограмме, положительные импульсы широкие и небольшие по амплитуде. Это самый низкий КПД для импульсного стабилизатора.

Напряжение на входе 18,2В, ток 0,34А. Напряжение на выходе 5,В, ток 0,99А. Мощность на входе равна 18,2В х 0,34А = 6,2Вт. Полезная мощность в нагрузке равна: 5 В х 0,99А = 5Вт. КПД = 5 : 6,2 = 0,88 или 80%. Положительные импульсы по амплитуде выше, а по длительности меньше, чем в предыдущем случае. По сравнению с КПД линейного стабилизатора 25% при близком напряжении (там было 19В) это в разы лучше.

У линейного стабилизатора больше 19В повышать напряжение на входе не было возможности так как микросхема перегружалась и у нее срабатывала защита. У импульсного стабилизатора повышать напряжение можно. У 2576 до 40В, а у 2576HV до 60В. При этом КПД еще повышается.

Рассчитанный по методике, приведенной выше, при 24,2В КПД импульсного стабилизатора составляет 90%. При этом микросхема практически не греется, так как в последнем рассмотренном примере на ней выделяется мощность 0,6 Вт. У линейного стабилизатора при 19В мощность на микросхеме более 15Вт. Разница впечатляет. Для наглядности результаты сведены в таблицу при минимальных напряжениях на входе:

И при максимальных напряжениях на входе:

Но у импульсных стабилизаторов тоже есть недостатки. Конструктивно немного сложнее, чем линейный стабилизатор. Требуется индуктивность и быстрый диод на выходе. Но самое главное пульсации выше и есть помехи. Как видно на фото ниже они достигают 0,1В при токе 1А.

Для устранения указанных недостатков нужно применять дополнительные фильтры, например, как рекомендовано в документации микросхем 2576:

В любом случае, выигрыш КПД в разы по сравнению с линейными стабилизаторами делает импульсные стабилизаторы напряжения наиболее распространенными в последнее время. А повышение рабочей частоты, например, до 180кГц в микросхемах XL4016, делает возможным получать токи в нагрузке до 8А при небольших габаритах блока с радиатором в целом.

Используя такой импульсный стабилизатор напряжения с возможностью регулировки выходного тока и небольшой вольтметр-амперметр можно изготовить регулируемый блок питания для многих приборов и зарядное устройство для аккумуляторов включая автомобильные. Подробнее как это сделать показано здесь.

Материал статьи продублирован на видео:

Импульсный стабилизатор на 12В 4,5А

Импульсные стабилизаторы напряжения (ИСН) пользуются большой популярностью у радиолюбителей. В последние годы такие устройства строят на базе специализированных микросхем, полевых транзисторов и диодов Шоттки. Благодаря этому технические характеристики ИСН значительно улучшились, особенно КПД, который достигает 90%, при одновременном упрощении схемотехники. Описываемый стабилизатор есть результат поиска компромисса между качественными показателями, сложностью и ценой.

Стабилизатор построен по схеме с самовозбуждением. Он обладает достаточно высокими эксплуатационными характеристиками и надежностью, имеет защиту от перегрузок и коротких замыканий выхода, а также от появления на выходе входного напряжения в случае аварийного пробоя регулирующего транзистора. Принципиальная схема ИСН изображена на рис. 5.21. Его основа — широкораспространенный ОУ КР140УД608А.

Читайте так же:
Схема регулируемого стабилизатора напряжения с током

В отличие от многих устройств подобного назначения, для слежения за выходным напряжением и током перегрузки, используется общая цепь ООС, образуемая транзистором VT4, а в качестве датчика тока используется катушка индуктивности L2 (активная составляющая ее сопротивления), которая одновременно является частью LC-фильтра (L2, C3), уменьшающего пульсации выходного напряжения. Выходное напряжение определяют стабилитрон VD2 и эмиттерный переход транзистора VT4, а ток перегрузки — нормируемое активное сопротивление катушки индуктивности L2.

Все это позволило в какой-то мере упростить ИСН, уменьшить пульсации выходного напряжения и увеличить КПД, благодаря совмещению датчика тока с LC-фильтром. Недостаток такого схемного решения — несколько завышенное выходное сопротивление устройства.

Основные технические характеристики ИСН:

  • Выходное напряжение, В, при отсутствии нагрузки. 12г5;
  • при токе нагрузки 4 А. 12;
  • Ток срабатывания защиты, А. 4,5;
  • Напряжение пульсации (при емкости
  • сглаживающего конденсатора выпрямителя 4700 мкФ), мВ. 16;
  • Частота преобразования (при токе нагрузки 4 А), кГц. около 20;
  • КПД (при токе нагрузки 4 А), %, не менее. 80;
  • Входное напряженйе, В. 16. 27.

В случае питания от стабилизированного источника постоянного тока работоспособность устройства сохраняется при снижении входного напряжения практически до открытого состояния транзистора VT3.

Дальнейшее уменьшение входного напряжения приводит к срыву генерации, но VT3 остается открытым. Если при этом на выходе возникнет перегрузка или короткое замыкание, генерация восстанавливается и стабилизатор начинает работать в режиме ограничения тока. Это свойство позволяет использовать его в качестве электронного предохранителя без «защелки». Работает стабилизатор следующим образом.

Из-за разного соотношения сопротивлении резисторов делителей R6, R7 и R8, R9 напряжение на неинвертирующем входе ОУ DA! в момент включения питания оказывается больше, чем на инвертирующем, поэтому на его выходе устанавливается высокий уровень. Транзисторы VT1. VT3 открываются и конденсаторы С2, C3 начинают заряжаться, а катушка L1 — накапливать энергию.

После того как напряжение на выходе стабилизатора достигнет значения, соответствующего пробою стабилитрона VD2 и открыванию транзистора VT4, напряжение на неинвертирующем входе ОУ ОА1 становится меньше, чем на инвертирующем (из-за шунтирования R9 резистором R10), и на его выходе устанавливается низкий уровень.

В результате транзисторы VT1. VT3 закрываются, полярность напряжения на выводах катушки L1 скачком изменяется на противоположную, открывается коммутирующий диод VD1 и энергия, накопленная в катушке L1 и конденсаторах С2, C3, отдается в нагрузку.

При этом выходное напряжение уменьшается, стабилитрон VD2 и транзистор VT4 закрываются, на выходе ОУ появляется высокий уровень и транзистор VT3 снова открывается, начиная тем самым новый рабочий цикл стабилизатора.

При увеличении тока нагрузки сверх номинального значения возрастающее падение напряжения на активном сопротивлении катушки L2 начинает в большей мере открывать транзистор VT4, ООС по току становится преобладающей, а стабилитрон VD2 закрывается. Из-за действия ООС выходной ток стабилизируется, а выходное напряжение и входной ток уменьшаются, обеспечивая тем самым безопасный режим работы транзистора VT3. После устранения перегрузки или короткого замыкания устройство возвращается в режим стабилизации напряжения.

Как видно из схемы, транзисторы VT1 и VT3 образуют составной транзистор. Такое схемное решение оптимально при использовании в качестве ключевого элемента биполярного транзистора, так как в этом случае обеспечивается относительно небольшое падение напряжения на открытом транзисторе VT3 при относительно малых токах управления.

При этом транзистор VT1 насыщается, обеспечивая оптимальные статические потери составного транзистора, a VT3 не насыщается, обеспечивая оптимальные динамические потери. В качестве датчика тока VT4 применен мощный транзистор серии КТ817.

В принципе, здесь возможно использование и более дешевого маломощного транзистора, однако у мощных при малых рабочих токах (как в данном случае) напряжение открывания эмиттерного перехода — всего около 0,4 В, тогда как у маломощных, например, КТ3102, оно — около 0,55 В.

Таким образом, при одном и том же токе срабатывания защиты сопротивление измерительного резистора в случае использования мощного транзистора получается меньше, обеспечивая тем самым выигрыш в КПД стабилизатора.

В описываемом ИСН, как отмечалось, предусмотрена защита от появлений входного напряжения на выходе при пробое регулирующего транзистора VT3. В этом случае напряжение на стабилитроне VD3 становится более 15 В, ток в силовой цепи резко возрастает и предохранитель FU1 сгорает. Предполагается, что последний перегорит раньше, чем это случится со стабилитроном (из-за тепловых перегрузок).

Имитация аварии (замыкание выводов коллектора и эмиттера VT3) показала, что стабилитроны КС515А (в металлическом корпусе) отлично защищают питаемые от ИСН устройства: при сгорании предохранителя стабилитроны, выходя из строя, остаются «в глубоком» коротком замыкании (не обрываются).

Такие же результаты получены при испытании стабилитронов КС515Г, а также аналогичных импортных (в пластмассовых корпусах). Неудовлетворительно вели себя аналогичные стабилитроны в стеклянных корпусах — они успевали перегорать одновременно с предохранителем.

В ИСН можно применить любые транзисторы указанных на схеме серий (кроме КТ816А в качестве VT1). Оксидные конденсаторы С2, C3 — зарубежного производства марки SR (приближенный аналог К50-35). Наиболее подходящая замена КР140УД608 — КР140УД708.

Накопительная катушка индуктивности L1 помещена в броневой магнитопровод из двух чашек 422 из феррита М2000НМ с зазором около 0,2 мм, образованным двумя слоями самоклеющейся бумаги. Наматывают катушку проводом ПЭЛ-1,0.

Читайте так же:
Схема мощного импульсного стабилизатора тока

Чтобы катушка не «пищала» на частоте преобразования, чашку с обмоткой погружают на некоторое время в резервуар с нитролаком, затем извлекают и дают лаку стечь. После этого чашку надевают на предварительно вставленный в соответствующее отверстие платы стягивающий винт, надевают вторую чашку и полученную таким образом сборку стягивают винтом с гайкой и шайбой.

После высыхания лака выводы катушки аккуратно зачищают, облуживают и припаивают к соответствующим контактам платы. Затем монтируют остальные детали. Датчик тока катушки L2 помещают в магнитопровод из двух чашек 414 из феррита той же марки, что и катушка L1, и такой же диэлектрической прокладкой. Для обмотки используют провод ПЭЛ-0,5 длиной 700 мм, пропитывать лаком ее необязательно. Эту катушку можно изготовить и иначе, намотав провод указанного диаметра и длины на стандартный дроссель

ДПМ-0,6, однако эффективность подавления импульсов на частоте преобразования в этом случае несколько снизится.

Стабилизатор собирают на печатной плате из одностороннего фольгированного стеклотекстолита, чертеж которой показан на рис. 5.22. В случае, если ИСН будет использоваться при максимальном токе нагрузки, транзистор VT3 необходимо установить на теплоотводе в виде алюминиевой пластины площадью не менее 100 см2 и толщиной 1,5. 2 мм.

На этом же теплоотводе через изолирующую прокладку (например, слюдяную) закрепляют и коммутирующий диод VD1. При токах нагрузки менее 1 А тепло-отвод для транзистора VT3 и диода VD1 не потребуется, однако в этом случае ток срабатывания защиты необходимо уменьшить до 1,2 А, заменив катушку L2 резистором С5-16 сопротивлением 0,33 Ом и мощностью 1 Вт.

В налаживании описанный ИСН практически не нуждается. Возможно, однако, придется уточнить ток срабатывания защиты, для чего провод катушки L2 следует взять изначально большей длины.

Припаяв его к соответствующим контактам платы, постепенно укорачивают до получения необходимого тока срабатывания защиты, а затем наматывают катушку L2. Использовать стабилизатор при токах нагрузки более 4 А не следует. Ограничение связано в основном с максимально допустимым импульсным током коллектора транзистора серии КТ805.

Импульсный стабилизатор напряжения

Импульсный стабилизатор напряжения – это работающий в ключевом режиме стабилизатор напряжения, то есть в режиме ключа. При максимальном сопротивлении он отсекает ток, а в режиме насыщения – пропускает, имея при этом минимальное сопротивление. Интегрирующий элемент повышает напряжение по мере того, как в нем накапливается энергия, и понижает, когда накопление энергии падает. Наличие такого элемента существенно снижает энергетические потери и улучшает показатели массы и габаритов прибора. Импульсный стабилизатор в зависимости от типа может работать в сетях переменного и постоянного напряжения и тока.

Основным элементом такого источника является ключ, то есть устройство, которое может за короткий временной интервал изменить сопротивление для прохождения электрического тока. Интегратор, напротив, не может изменять напряжение мгновенно. Он меняет его постепенно по мере накопления энергии.

Импульсный стабилизатор напряжения может быть повышающий, понижающий, может произвольно изменять входное напряжение и инвертировать.

Микросхема стабилизатора разраюатывается на полевых транзисторах, на тиристорах, на биполярных транзисторах. Схема содержит интегрирующий элемент типа дроссель, аккумулятор или конденсатор.

Импульсный стабилизатор может быть построен на основе широтно-импульсной модуляции или быть релейного типа. Последние имеются в ассортименте компании Sassin. Они выпускаются мощностью от 500 Вт до 10 кВт. Модели от 3 кВт имеют возможность подключать нагрузку напрямую к цепи питания. Приборы имеют функцию защиты от аномально частых включений-выключений подключенной техники, возникающих при появлении скачков в сети.

Фирма Ресанта также занимается производством таких стабилизаторов. В ее ассортименте есть модели широкого диапазона мощностей и могут использоваться как в бытовых, так и в промышленных целях.

Купить импульсный стабилизатор напряжения сегодня возможно и через Интернет. Достаточно выбрать нужную модель, оплатить заказ и ждать доставки. Цена на такие приборы колеблется в широких пределах и определяется техническими характеристиками того или иного устройства.

Импульсный стабилизатор напряжения – это работающий в ключевом режиме стабилизатор напряжения, то есть в режиме ключа. При максимальном сопротивлении он отсекает ток, а в режиме насыщения – пропускает, имея при этом минимальное сопротивление. Интегрирующий элемент повышает напряжение по мере того, как в нем накапливается энергия, и понижает, когда накопление энергии падает. Наличие такого элемента существенно снижает энергетические потери и улучшает показатели массы и габаритов прибора. Импульсный стабилизатор в зависимости от типа может работать в сетях переменного и постоянного напряжения и тока.

Основным элементом такого источника является ключ, то есть устройство, которое может за короткий временной интервал изменить сопротивление для прохождения электрического тока. Интегратор, напротив, не может изменять напряжение мгновенно. Он меняет его постепенно по мере накопления энергии.

Импульсный стабилизатор напряжения может быть повышающий, понижающий, может произвольно изменять входное напряжение и инвертировать.

Микросхема стабилизатора разраюатывается на полевых транзисторах, на тиристорах, на биполярных транзисторах. Схема содержит интегрирующий элемент типа дроссель, аккумулятор или конденсатор.

Импульсный стабилизатор может быть построен на основе широтно-импульсной модуляции или быть релейного типа. Последние имеются в ассортименте компании Sassin. Они выпускаются мощностью от 500 Вт до 10 кВт. Модели от 3 кВт имеют возможность подключать нагрузку напрямую к цепи питания. Приборы имеют функцию защиты от аномально частых включений-выключений подключенной техники, возникающих при появлении скачков в сети.

Читайте так же:
Импульсный стабилизатор тока схема 10а

Фирма Ресанта также занимается производством таких стабилизаторов. В ее ассортименте есть модели широкого диапазона мощностей и могут использоваться как в бытовых, так и в промышленных целях.

Купить импульсный стабилизатор напряжения сегодня возможно и через Интернет. Достаточно выбрать нужную модель, оплатить заказ и ждать доставки. Цена на такие приборы колеблется в широких пределах и определяется техническими характеристиками того или иного устройства.

Импульсный стабилизатор напряжения

Довольно часто возникают ситуации, когда характеристики электрического тока в сети не позволяют нормально эксплуатировать различные приборы и оборудование. Для решения этой проблемы используется импульсный стабилизатор тока, конструктивно напоминающий стабилизирующее устройство напряжения, работающего на основе импульсного преобразователя. Основной функцией импульсного стабилизатора является контроль над состоянием тока через нагрузку. В случае снижения тока в нагрузке подкачивается дополнительная мощность, а при повышении тока – мощность понижается.

Разновидности

По соотношению входного и выходного напряжения

  • Понижающие
  • Повышающие
  • С произвольным изменением напряжения
  • Инвертирующие

По типу ключевого элемента Интегрирующим элементом может быть В зависимости от режима работы могут быть стабилизаторы

  • на основе широтно-импульсной модуляции
  • двухпозиционные (или релейные)

Устройство импульсного стабилизатора

Схемы импульсных преобразователей, получившие наиболее широкое распространение, оборудуются реактивным элементом – дросселем, к которому энергия подкачивается определенными порциями с помощью специального ключа, еще называемого коммутатором. Подкачка осуществляется от входной цепи и далее поступает на нагрузку. В результате, такой режим работы дает существенную экономию электроэнергии, особенно, если стабилизатор работает на полевом транзисторе.

Однако, несмотря на явные преимущества, у импульсных преобразователей имеется ряд недостатков, для преодоления которых используются различные технические и конструктивные решения. В первую очередь это связано с электромагнитными и другими помехами, возникающими в процессе работы импульсного конвертера, а также сложной конструкцией устройства. Во время эксплуатации невозможно достичь максимального эффекта, поскольку происходит нагрев и энергия затрачивается впустую. Немаловажное значение имеет высокая стоимость импульсных устройств. Тем не менее, для многих схем экономия электроэнергии выступает на передний план, поэтому негативное влияние недостатков в большинстве случаев удается максимально снизить.

Функциональные схемы по типу цепи управления

Импульсный стабилизатор напряжения представляет собой систему автоматического регулирования. Задающим параметром для контура регулирования служит опорное напряжение, которое сравнивается с выходным напряжением стабилизатора. В зависимости от сигнала рассогласования устройство управления изменяет соотношение длительностей открытого и закрытого состояния ключа.

В представленных ниже структурных схемах можно выделить три функциональных узла: ключ (1), накопитель энергии (2) (который иногда называют фильтром) и цепь управления. При этом ключ (1) и накопитель энергии (2) вместе образуют силовую часть стабилизатора напряжения, которая вместе с цепью управления образуют контур регулирования. По типу цепи управления различают три схемы.

С триггером Шмитта

Стабилизатор напряжения с триггером Шмитта называется также релейным или стабилизатором с двухпозиционным регулированием. В нём выходное напряжение сравнивается с нижним и верхним порогами срабатывания триггера Шмитта (4 и 3) посредством компаратора (4), который обычно является входной частью триггера Шмитта. При замкнутом ключе (1) входное напряжение поступает на накопитель энергии (2), выходное напряжение нарастает, и после достижения верхнего порога срабатывания Umax триггер Шмитта переключается в состояние, размыкающее ключ (1). Накопленная энергия расходуется в нагрузке, при этом напряжение на выходе стабилизатора спадает, и после достижения нижнего порога срабатывания Umin триггер Шмитта переключается в состояние, замыкающее ключ. Далее описанный процесс периодически повторяется. В результате на выходе образуется пульсирующее напряжение, размах пульсаций которого зависит от разности порогов срабатывания триггера Шмитта.

Такой стабилизатор характеризуются сравнительно большой, принципиально неустранимой пульсацией напряжения на нагрузке и переменной частотой преобразования, зависящей как от входного напряжения, так и от тока нагрузки.

С широтно-импульсной модуляцией

Структурная схема стабилизатора напряжения с ШИМ

Как и в предыдущей схеме, в процессе работы накопитель энергии (2) или подключён к входному напряжению, или передаёт накопленную энергию в нагрузку. В результате на выходе имеется некоторое среднее значение напряжения, которое зависит от входного напряжения и скважности импульсов управления ключом (1). Вычитатель-усилитель на операционном усилителе (4) сравнивает выходное напряжение с опорным напряжением (6) и усиливает разность, которая поступает на модулятор (3). Если выходное напряжение меньше опорного, то модулятор увеличивает отношение времени открытого состояния ключа к периоду тактового генератора (5). При изменении входного напряжения или тока нагрузки скважность импульсов управления ключом изменяется таким образом, чтобы обеспечить минимальную разность между выходным и опорным напряжением.

В таком стабилизаторе частота преобразования не зависит от входного напряжения и тока нагрузки и определяется частотой тактового генератора.

С частотно-импульсной модуляцией

При этом способе управления импульс, открывающий ключ, имеет постоянную длительность, а частота следования импульсов зависит от сигнала рассогласования между опорным и выходным напряжениями. При увеличении тока нагрузки или снижении входного напряжения частота увеличивается. Управление ключом может осуществляться, например, с помощью моностабильного мультивибратора (одновибратора) с управляемой частотой запуска.

Стабилизаторы с триггером Шмитта

Такой вид импульсного устройства имеет свои особенности наименьшим набором компонентов. Основную роль в конструкции играет триггер. В его состав входит компаратор. Основной задачей компаратора является сравнивание величины выходной разности потенциалов с наибольшим допустимым.

Читайте так же:
Ремонт стабилизатор напряжение переменного тока

Принцип действия аппарата с триггером Шмитта состоит в том, что при увеличении наибольшего напряжения осуществляется коммутация триггера в позицию ноля с размыканием электронного ключа. В одно время разряжается дроссель. Когда напряжение доходит до наименьшего значения, то выполняется коммутация на единицу. Это обеспечивает замыкание ключа и прохождение тока на интергратор.

Такие приборы имеют отличия своей упрощенной схемой, но использовать их можно в особых случаях, так как импульсные стабилизаторы бывают только повышающими и понижающими.

Импульсный конвертер как стабилизатор тока

Многие импульсные блоки питания оборудованы системой стабилизации выходного напряжения. Подобные схемы, особенно повышенной мощности, помимо обратной связи с выходным напряжением, включают в свой состав систему контроля тока ключевого элемента.

В этом качестве может использоваться резистор с незначительным сопротивлением. Наличие такого контроля обеспечивает работу дросселя в необходимом режиме. Подобные контрольные элементы используются в простейших стабилизаторах тока, сделанных своими руками, и эффективно стабилизируют выходной ток.

Преобразователи на основе дросселя

Стабилизаторы с ёмкостным накопителем не получили широкого распространения, так как они хорошо работают только при достаточно большом внутреннем сопротивлении первичного источника. Такая ситуация возникает достаточно редко, т. к. внутреннее сопротивление источников питания стараются уменьшить, для отдачи большей мощности в нагрузку и меньших потерь энергии в источнике (например, внутреннее сопротивление бытовой сети электроснабжения в жилых помещениях составляет обычно от 0,05 Ом до 1 Ом). При работе от источника с маленьким внутренним сопротивлением в качестве накопителя энергии целесообразно использовать дроссель, либо более сложные комбинации дросселей и конденсаторов. Рассмотрим некоторые простые разновидности преобразователя.

Преобразователь с понижением напряжения

Кроме ключа S и дросселя L содержит диод D и конденсатор C. Когда ключ S замыкается, ток от источника течёт через дроссель L и нагрузку. ЭДС самоиндукции дросселя приложена обратно напряжению источника тока. В результате напряжение на нагрузке равно разности напряжения источника питания и ЭДС самоиндукции дросселя, ток через дроссель растёт, как и напряжение на конденсаторе C и нагрузке. При разомкнутом ключе S ток продолжает протекать через дроссель в том же направлении через диод D и нагрузку, а также конденсатор C. ЭДС самоиндукции приложена к нагрузке R через диод D, ток через дроссель постепенно уменьшается, как и напряжение на конденсаторе C и на нагрузке.

Преобразователь с повышением напряжения

В этом преобразователе ключ установлен после дросселя. Когда ключ замкнут, ток от источника протекает через дроссель L, ток через него увеличивается, в нём накапливается энергия. При размыкании ключа ток от источника течёт через дроссель L, диод D и нагрузку. Напряжение источника и ЭДС самоиндукции дросселя приложены в одном направлении и складываются на нагрузке. Ток постепенно уменьшается, дроссель отдаёт энергию в нагрузку. Пока ключ замкнут, нагрузка питается напряжением конденсатора C. Диод D не даёт ему разрядиться через ключ S.

Возможно также совмещение этой схемы с предыдущей, что позволяет произвольно изменять величину выходного напряжения: как повышать, так и понижать. Для этого перед дросселем устанавливаются диод и ключ, как в предыдущей схеме.

Инвертирующий преобразователь

В нём дроссель подключен параллельно источнику и нагрузке. Когда ключ S замкнут, ток от источника течёт через дроссель и быстро растёт. Когда ключ размыкается, ток продолжает течь через нагрузку R и диод D. ЭДС самоиндукции дросселя приложена в обратную сторону, по сравнению с напряжением источника. Поэтому напряжение к нагрузке также приложено в обратном направлении. Когда ключ S замкнут — диод D закрывается, а нагрузка питается зарядом конденсатора C.

Во всех трёх схемах диод D может быть заменён на ключ, замыкаемый в противофазе к основному ключу. Во многих случаях, особенно в низковольтных стабилизаторах, это позволяет увеличить КПД. Такую схему называют синхронным выпрямителем см. синхронное выпрямление (англ.)

Гальваническая развязка

Если требуется гальваническая развязка входных и выходных цепей импульсного стабилизатора — например, по требованиям электробезопасности при использовании промышленной сети переменного тока в качестве первичного источника питания — можно применить разделительный трансформатор в рассмотренных выше основных схемах. Использование высокочастотного трансформатора в схеме преобразователя с понижением напряжения приводит к схеме однотактного или двухтактного прямоходового преобразователя (англ. forward converter). Замена дросселя в схеме инвертирующего преобразователя на дроссель с двумя или более обмотками приводит к схеме обратноходового преобразователя (англ. flyback converter).

Некоторые особенности импульсных преобразователей с гальванической развязкой входа от выхода:

Другие разновидности

Существуют другие разновидности импульсных преобразователей напряжения, использующихся в стабилизаторах. Например, такие преобразователи, как Обратноходовый преобразователь и Двухтактный преобразователь имеют индуктивную развязку выходных цепей, что позволяет питать с их помощью устройства, для которых недопустима гальваническая связь с питающей сетью.

Резонансный преобразователь имеет наилучшие условия работы ключей, что позволяет строить на его основе преобразователи большой мощности (до десятков киловатт) с достаточно высоким КПД. Однако его недостатком является сложность проектирования, что мешает его широкому распространению.

Квазирезонансный преобразователь обладает значительно более высоким КПД по сравнению с широтно-импусными модуляторами, благодаря чему обеспечивается минимальное энергопотребление в дежурном режиме и низкое тепловыделение в рабочем. Выходное напряжение БП регулируется за счет изменения частоты работы преобразователя.

Видео

голоса
Рейтинг статьи
Ссылка на основную публикацию