Импульсный стабилизатор тока принцип работы
Экономичный импульсный стабилизатор напряжения
Экономичный импульсный стабилизатор напряжения
Отличительная особенность описанного здесь импульсного стабилизатора — небольшой ток, который потребляет его узел управления. Это в какой-то степени компенсирует снижение КПД, свойственное таким стабилизаторам при малых токах нагрузки. На страницах журнала описано немало экономичных стабилизаторов постоянного напряжения, например в [1, 2]. По принципу действия эти устройства — последовательные транзисторные стабилизаторы непрерывного регулирования. От обычных они отличаются только тем, что узлы формирования образцового напряжения и сравнения выполнены на элементах, допускающих работу в режиме микротоков, за счет чего достигается некоторая экономия энергопотребления. Однако КПД таких стабилизаторов — невысок. Другой класс этих устройств — импульсные стабилизаторы. Они обладают более высоким КПД при среднем и большом токе нагрузки, однако при малом токе КПД у них уменьшается. Описанное устройство лишено такого недостатка. Это позволяет использовать его практически в любой аппаратуре: от различных цифровых до звуковоспроизводящих и радиоприемных устройств. Технические характеристики приведены в таблице:
Ток холостого хода, мА, не более | 0,25 |
Длительный ток нагрузки, мА: номинальный максимальный | 100 200 |
Выходное стабилизированное напряжение, В | 9 |
Входное напряжение, В | 11. 15 |
КПД, % при входном напряжении 11 В и номинальном токе нагрузки при входном напряжении 13 В и токе нагрузки 10 мА 100мА 200мА | 82 65 |
Коэффициент стабилизации при номинальном токе нагрузки, не менее | 300 |
Амплитуда пульсаций, мВ, не более, при максимальном токе нагрузки | 2 |
Стабилизатор содержит (рис. 1) коммутирующий составной транзистор (VТ1, VТ2), коммутирующий диод (VD2) и дроссель (L1). В узел управления входят источник образцового напряжения (VТЗ) и компаратор (DА1). На выходе стабилизатора включен транзисторный фильтр (VТ4, VТ5). Принцип работы устройства соответствует обычному импульсному регулированию. О нем подробно написано в [3]. Поэтому имеет смысл остановиться лишь на отличительных особенностях в узле управления и транзисторном фильтре.
Основа узла управления — компаратор, выполненный на ОУ К140УД12. К его инвертирующему входу подключен микромощный источник образцового напряжения, выполненный на обратносмещенном эмиттерном переходе транзистора VТ3 [1]. Напряжение его стабилизации (7. 7,5 В) обеспечивается при токе 20. 30 мкА. На неинвертирующий вход ОУ подан сигнал сравнения от резистивного делителя R5-R7. Подстроечным резистором R6 регулируют выходное напряжение. Конденсатор С3 увеличивает фазовый сдвиг сигнала обратной связи, что необходимо для циклического характера работы устройства. Он же определяет частоту рабочих циклов и в значительной мере влияет на размах пульсаций.
Выход компаратора подключен к базе составного транзистора VТ1, VТ2 через резистор R3, задающий ток управления, и стабилитрон VD1, который обеспечивает отсечку управляющего тока и надежное закрывание коммутирующего транзистора во всем интервале входного напряжения. Конденсатор С2 сглаживает фронты импульсов и тем самым подавляет высокочастотные помехи, возникающие при работе.
В отличие от традиционных импульсных стабилизаторов, на выходе включен не LС-фильтр, а транзисторный. Дело в том, что LС-фильтр резко ухудшает динамические характеристики устройства: при изменении тока нагрузки возникают выбросы выходного напряжения. Транзисторный же фильтр свободен от этого недостатка, не требует намоточных изделий и эффективно подавляет пульсации не менее чем на 40 дБ.
Благодаря высокому коэффициенту передачи составного транзистора VТ4, VТ5 (не менее 1500) и режиму работы транзистора VТ4 с малым напряжением коллектор-эмиттер, КПД фильтра весьма высок и понижает общий КПД стабилизатора всего на 6. 8%, что является совсем невысокой платой за малый уровень пульсаций.
У транзисторного фильтра есть еще одно преимущество — «мягкое» включение стабилизатора: выходное напряжение плавно нарастает в течение 2. 4 с по мере зарядки конденсатора С6. В звуковоспроизводящей аппаратуре это устраняет характерные неприятные щелчки при включении питания.
Устройство изготовлено на макетной плате. В нем применены импортные малогабаритные оксидные конденсаторы фирмы Samsung (С1, С5-С7), керамические КМ-6 (С2-С4), постоянные резисторы — МЛТ-0,125. Дроссель L1 содержит 28 витков провода ПЭВ-2 0,56, намотанных на броневом магнитопроводе Б14 из феррита 2000НМ. Немагнитный зазор в магнитопроводе обеспечен прокладкой из бумаги толщиной 0,2 мм.
ОУ К140УД12 заменим на К140УД1208. Транзисторы VТ1, VТ4 должны иметь малое напряжение насыщения, допустимый импульсный ток коллектора 400. 500 мА и коэффициент передачи тока не менее 50. Этим условиям удовлетворяют транзисторы серии КТ209 или КТ501 с буквенными индексами Д, Е, К. Коэффициент передачи тока транзисторов VТ2, VТ5 должен быть не менее 300. При соблюдении этого условия, кроме указанных на схеме, применимы транзисторы серий КТ361 и КТ315 с буквенными индексами Б, Г, Е.
Транзисторы VТ1, VТ4 при номинальном токе не требуют теплоотвода. Если стабилизатор предполагают эксплуатировать при максимальном токе нагрузки, транзистор VT1 следует установить на небольшой теплоотвод площадью 10. 15 см 2 . Допустимо также использовать транзисторы средней мощности, например, серий КТ639, КТ644, при этом выходной ток стабилизатора можно увеличить до 0,5 А.
Правильно собранное устройство начинает работать сразу. Его налаживание сводится к установке подстроечным резистором R6 выходного напряжения 9 В при токе нагрузки 1 мА (соответствует сопротивлению нагрузки 9,1 кОм — при отсутствии нагрузки выходное напряжение увеличивается). Затем, подключив к выходу стабилизатора резистор сопротивлением 91 Ом и мощностью не менее 1 Вт, проверяют и при необходимости корректируют подборкой резистора R10 падение напряжения между эмиттером и коллектором транзистора VТ4 в пределах 0,9. 1,1 В. После этого окончательно устанавливают выходное напряжение резистором R6.
Стабилизатор может работать и при другом выходном напряжении (8. 12 В), причем с его ростом КПД устройства увеличивается. Уровень пульсаций проверяют осциллографом, подключенным к выходу нагруженного стабилизатора. Если амплитуда пульсаций при максимальном токе нагрузки превышает 2 мВ, подбирают конденсатор С3 (в сторону уменьшения емкости), не допуская, однако, срыва колебаний.
Стабилизатор целесообразно изготовить на общей плате вместе с выпрямителем в виде единого блока, причем его конструкция зависит от особенностей питаемого устройства. Выпрямитель — обычный двухполупериодный (рис. 2), конденсаторы С1, С2 устраняют соответственно сетевые помехи и мультипликативный фон при питании радиоприемников.
Следует отметить, что в импульсном блоке питания мощность сетевого трансформатора Т1 на 20. 30 % меньше, чем в непрерывном. В связи с этим предлагаемый блок можно выполнить весьма малогабаритным и встроить, например, в батарейный отсек радиоприемника или магнитолы. Разумеется, возможно применение и в виде отдельного сетевого адаптера.
Литература:
1. Нечаев И. Экономичный стабилизатор. Радио, 1984, №12, с. 53.
2. Федичкин С. Микромощные стабилизаторы напряжения. Радио, 1988, №2, с. 56, 57.
3. Титце У., Шенк К. Полупроводниковая схемотехника. — М.: Мир, 1983.
Особенности применения импульсного стабилизатора напряжения
Использование различного рода техники в повседневной жизни –это непременный атрибут современного общества. Но далеко не все приборы рассчитаны на подключение к стандартной электросети на 220В. Многие из них потребляют энергию с напряжением от 1 до 25В. Для ее подачи используют специальное оборудование.
Однако его основная задача состоит не столько в понижении параметров на выходе, сколько в соблюдении стабильного их уровня в сети. Решить ее можно при помощи стабилизационного устройства. Но как правило такие приборы достаточно громоздки и не совсем удобны в применении. Лучший вариант – это импульсный стабилизатор напряжения. Он отличается от линейных не только габаритами, но и по принципу работы.
- Устройство прибора
- Принцип работы
- Различные виды импульсных стабилизаторов
- Разбираем особенности приборов
- Обзор популярных производителей
Что представляет собой импульсный стабилизатор
Прибор, состоящий из двух основных узлов:
- Интегрирующего;
- Регулировки.
На первом происходит накапливание энергии с последующей ее отдачей. Регулирующий блок подает ток и при необходимости выполняет прерывание этого процесса. Причем, в отличие от линейных моделей, в импульсных, этот элемент может находиться в замкнутом или разомкнутом состоянии. Иными словами, он работает как ключ.
Сфера применения таких приборов достаточно широка. Однако наиболее часто они используются в навигационном оборудовании, а также импульсный стабилизатор следует купить для подключения:
- ЖК телевизоров
- Источников питания, используемых в цифровых системах;
- Низковольтного промышленного оборудования.
Могут использоваться импульсные повышающие стабилизаторы напряжения и в сетях с переменным током для преобразования его в постоянный. Приборы этого класса также находят применение в качестве источников питания для мощных светодиодов, подзарядки аккумуляторов.
Как работает оборудование
Принцип действия устройства заключается в следующем. При замыкании регулирующего элемента происходит накопление энергии в интегрирующем. При этом происходит повышение напряжения. При размыкании ключа электричество постепенно отдается потребителям, приводя к снижению напряжения.
Смотрим видео, принцип работы прибора:
Столь простой способ функционирования прибора позволяет экономно расходовать электроэнергию, а кроме того дал возможность создать миниатюрный агрегат.
В качестве регулирующего элемента в нем могут использоваться следующие детали:
- Тиристор;
- Транзисторы.
В роли интегрирующих узлов прибора выступают:
- Дроссель;
- Батарея;
- Конденсатор.
Конструктивные особенности стабилизатора связаны со способом его работы. Различают устройства двух типов:
- ШИМ;
- С триггером Шмитта.
Рассмотрим, чем отличаются эти две разновидности импульсных стабилизаторов напряжения.
Модели ШИМ
Приборы этого типа, в конструктивном плане имеют некоторые отличия. Они состоят из двух основных элементов, а также:
- Генератора;
- Модулятора;
- Усилителя.
Их работа имеет прямую зависимость от величины напряжения на входе, а также скважности импульсов.
При размыкании ключа происходит переход энергии в нагрузку и в работу включается усилитель. Он сравнивает значения напряжения и определив разницу между ними передает усиление на модулятор.
Конечные импульсы должны иметь отклонение скважности, которое пропорционально выходным параметрам. Ведь от них зависит положение ключа. При конкретных значения скважности он размыкается или замыкается. Поскольку главную роль в работе прибора играют импульсы, то они и дали ему название.
Приборы с триггером Шмитта
Этот тип импульсных стабилизаторов напряжения отличается минимальным набором элементов. Главная роль в нем отведена триггеру, в состав которого включен компаратор. Задача этого элемента – сравнение значения выходного напряжения с максимально допустимым.
Смотрим видео принцип работы прибора с триггером Шмитта:
Работа прибора заключается в следующем. При превышении максимального напряжения происходит переключение триггера в нулевую позицию с размыканием ключа. Одновременно происходит разрядка дросселя. Но как только напряжение достигнет минимального значения происходит переключение с 0 на 1. Это приводит к замыканию ключа и поступлению тока в интегратор.
Хотя такие устройства и отличаются довольно простой схемой применять их можно только на отдельных направлениях. Объясняется это тем, что импульсные стабилизаторы напряжения могут быть понижающими или повышающими.
Классификация приборов
Подразделение приборов на типы осуществляется по различным критериям. Так по соотношению напряжения на входе и выходе различают следующие виды устройств:
- Инвертирующие;
- Произвольно изменяющие напряжение.
В качестве ключа могут использоваться такие детали, как:
- Транзисторы;
- Тиристоры.
Кроме этого существуют отличия и в самой работе импульсных стабилизаторов постоянного напряжения. Исходя из этого они классифицируются на модели, функционирующие на:
- На основе широтно-импульсной модуляции;
- Двухпозиционные.
Достоинства и недостатки стабилизаторов
Как и любое другое устройство модульный стабилизатор не является идеальным. Он имеет свои плюсы и минусы, о которых следует знать. К достоинствам прибора относятся:
- Легкое достижение стабилизации;
- Высокий КПД;
- Выравнивание напряжения в широком диапазоне;
- Устойчивые выходные параметры;
- Компактные габариты;
- Мягкое включение.
К недостаткам устройства относится в первую очередь сложное конструктивное исполнение. Наличие в нем большого количества специфических элементов не позволяет добиваться высокой надежности. Кроме того, минусом импульсного стабилизатора постоянного напряжения является:
- Создание большого числа частотных помех;
- Сложность выполнения ремонтных работ;
- Потребность в применении устройств, компенсирующих коэффициент мощности.
Допустимый диапазон частот
Работа этого устройства возможна при достаточно высокой частоте преобразования, что является его главным отличием от приборов с сетевым трансформатором. Повышение этого параметра позволило добиться минимальных габаритов.
Для большинства моделей диапазон частот может составлять от 20 до 80 кГц. Однако выбирая как ключевые, так и ШИМ-приборы нужно учитывать высшие гармоники токов. При этом верхнее значение параметра имеет определенные ограничения, соответствующие требованиям, предъявляемым к радиочастотной аппаратуре.
Применение устройств в сетях переменного тока
Приборы этого класса способны преобразовывать постоянный ток на входе в такой же на выходе. Если предполагается использовать их в сети переменного тока, то потребуется установка выпрямителя и сглаживающего фильтра.
Однако следует знать, что с ростом напряжения на входе устройства уменьшается выходной ток и наоборот.
Возможно подключение стабилизатора с использованием мостового выпрямителя. Но в таком случае он будет источником нечетных гармоник и для достижения необходимого коэффициента мощности потребуется использование конденсатора.
Обзор производителей
Выбирая стабилизатор, обращают внимание не только на его технические характеристики, но и на конструктивные особенности. Важна и марка производителя. Вряд ли будет иметь высокое качество прибор, изготовленный не известной широкому кругу покупателей фирмой.
Поэтому большинство потребителей предпочитают выбирать модели, принадлежащие популярным брендам, таким как:
- Hobbywing;
- Smartmodule.
Продукция этих компаний отличается высоким качеством, надежностью и рассчитана на длительный срок службы.
Заключение
Использование бытовой техники и других электроприборов стало неотъемлемым условием комфортной жизни. Но для того, чтобы ваши устройства не выходили из строя при нестабильной работе электросетей, стоит заранее подумать о приобретении стабилизатора. Какую модель выбрать зависит от параметров используемого оборудования. Если предполагается подключение современных ЖК телевизоров, мониторов и аналогичных устройств, то идеальный вариант – это импульсный стабилизатор.
Стабилизатор тока принцип работы
Принцип работы стабилизатора тока. Азы .
Параллельный стабилизатор с регулирующим .
Компенсационный стабилизатор напряжения
Стабилизатор тока на полевом транзисторе. .
Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения
Принцип регулирования тока в стенде на TL494
Импульсный стабилизатор напряжения. Принцип работы
Регулируемый стабилизатор КР142ЕН22А
автомобильный генератор переменного тока,как это работает
Простой БП на LM317 — Версия 2
Принцип работы релейного стабилизатора
Работа стабилизатора «Ресанта 10000/1-Ц»
Однофазный стабилизатор напряжения РЕСАНТА 5000/1-Ц
Стабилизатор или реле контроля напряжения
Параметрический стабилизатор напряжения
Компараторы. Часть 7 — Генератор треугольных импульсов
БП на LM2596 с регулировкой тока и напряжения
TDA2030 в качестве стабилизатора напряжения
Стабилизаторы напряжения или как получить 3,3 вольта
Стабилизатор напряжения ORTEA Orion Y60-15 — принцип работы
Стабилизатор напряжения электронный. Часть1.
Принцип работы преобразователя напряжения. .
Подключение стабилизатора к сети
КАК СДЕЛАТЬ ДЕЛИТЕЛЬ НАПРЯЖЕНИЯ СВОИМИ РУКАМИ [РадиолюбительTV 69]
Регулируемый стабилизатор тока
Импульсный стабилизатор (преобразователь) напряжения
Индикатор тока заряда аккумулятора. Сделай сам
Тестирование стабилизатора Энергия Hybrid 10000
Что Такое Стабилизатор Напряжения
Импульсный стабилизатор на AP1507
Стабилизатор тока и напряжения LM2596. Обзор.
Конструкция стабилизатора напряжения .
Реле напряжения. Защита от перепадов (скачков) напряжения.
Реле регулятор, выпрямитель напряжения.
Симисторный регулятор мощности
Делаем сами самый простой импульсный блок питания
Преобразователь постоянного напряжения (DC-DC step up converter)
Мощный стабилизатор напряжения с защитой по току.
Китайский стабилизатор токанапряжения.
Стабилизатор тока для электролизера
СТАБИЛИТРОН. Принцип действия. Маркировка
КАК СДЕЛАТЬ РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ СВОИМИ РУКАМИ
18. Стабилизаторы напряжения и тока.
Как увеличить мощность интегрального стабилизатора
Драйвер, стабилизатор тока на 900ma для светодиодов 5076 10W DC 12V
Простая схема источника питания светодиодной лампы
Экономичный стабилизатор напряжения на полевом .
Курсовая работа. Стабилизатор тока и напряжения.
Импульсные стабилизаторы постоянного тока на транзисторах: схема и принцип работы
Светодиодные светильники выполняют свои функции полноценно при качественном питании. Даже незначительные колебания силы тока в цепи провоцируют видимые пульсации, ухудшают долговечность. Аналогичные задачи решают в процессе зарядки аккумуляторных батарей. Для корректного решения обозначенных и других проблем подойдет стабилизатор тока на транзисторе. Самостоятельная сборка поможет обеспечить рабочие параметры устройства в точном соответствии с техническим заданием. Представленные ниже сведения пригодятся для выбора оптимальной электрической схемы.
Подключение мощного светодиода к сети питания через специализированный интегральный стабилизатор
Особенность стабилизатора на транзисторах
Применение такой элементной базы позволяет очень точно настроить работу блока стабилизации. Значительное выходное сопротивление транзистора уменьшает обратное влияние нагрузки. Отсутствие резисторов с большими номиналами в цепи уменьшает потери, что улучшает экономические параметры устройства.
Виды стабилизаторов
В простейшем варианте применяют ограничитель сил тока из резистора, установленного последовательно в цепь со светодиодом. Стандартные приборы подключают к источникам 5V (12V). Увеличивая напряжение, можно улучшить точность, однако при этом снизится КПД.
Максимальные значения электрических параметров источника должны быть на 10% больше рабочих значений светодиода. Падение напряжения указано в сопроводительной документации. Для расчета резистора (R) применяют следующую формулу:
где:
- Uп – напряжение источника питания;
- Uc – падение на светодиоде;
- Iпот – ток потребления.
Пример:
- Uп = 5 V;
- Uc = 2,5 V;
- Iпот = 0,25 А;
- R = (5-2,5)/0,3 ≈ 8,33 Ом;
- ближайший номинал – 8,45 Ом;
- мощность резистора = 0,3*0,3*8,45 ≈ 0,75 Вт.
К сведению. Последняя строка расчета наглядно демонстрирует энергетические потери. Нагревающийся резистор будет повышать температуру окружающей среды.
Усовершенствованные схемы собирают из следующих компонентов:
- трансформатором изменяют нужным образом амплитуду сигнала;
- для выпрямления применяют обычный мостик из диодов;
- конденсаторами сглаживают пульсации;
- резисторами ограничивают выходные токи.
Транзисторный стабилизатор напряжения и тока отличается экономичностью. Электрическое сопротивление во входной цепи устанавливают в качестве датчика. Этот компонент дополняет стабилитрон. Изменение напряжения на эмиттере позволяет регулировать выходные параметры автоматически без контроля и вмешательства со стороны пользователя.
Аналогичные функции вместо стабилитрона способен выполнить эмиттерный переход биполярного транзистора при соответствующем включении в электрическую схему.
Полевой транзистор применяют для подключения цепочек из нескольких светодиодов, других мощных нагрузок
Вместо набора из нескольких радиодеталей удобнее пользоваться специализированными микросхемами. Такие изделия обеспечивают высокую точность поддержания рабочих параметров выходного сигнала. Как в примере со стабилитроном, в определенной цепи устанавливают резистор для оперативного детектирования изменения силы тока.
Отдельно следует отметить импульсные схемы стабилизаторов. Такие изделия создают на основе быстродействующих электронных ключей. Главной особенностью является возможность оперировать с относительно высокими значениями выходных напряжений.
Простой стабилизатор тока на транзисторе
Параметры компонентов и рабочие характеристики схемы:
- R1 выбирают 1-15 Ом;
- R2 – от 150 до 250 Ом;
- D1 – стабилитрон или резистор подходящего номинала;
- Q1 – КТ 818 или аналог;
- напряжение источника питания – от 8 до 40 V;
- ток на выходе – 0,5-4,5А.
Стабилизатор тока на одном транзисторе
Пояснения:
- R2 и D2 формируют стандартный делитель напряжения;
- изменением потенциала на базе корректируется ток в цепи коллектора;
- при подключении мощной нагрузки R1 сильно нагревается;
- для точной регулировки выходных параметров устанавливают переменное сопротивление R2 (изменяют порог насыщения на соответствующем полупроводниковом переходе);
- при необходимости увеличивают выходной ток с применением составного транзистора.
Если расчет сделан точно, в рабочем диапазоне стабилизация тока выполняется с минимальными потерями. Простую схему несложно изготовить собственными руками даже без предыдущего опыта сборки.
Сборка стабилизатора тока из двух транзисторов
В этой схеме функции датчика выполняет резистор R2. Его номинал при подключении светодиодов выбирают с помощью формулы:
0,6/ Iн (ток в нагрузке).
Увеличение Iн открывает VT2, который, в свою очередь, запирает переход транзистора VT1.
Стабилизатор на двух транзисторах
Недостатком схемы специалисты считают существенное падение напряжения на основном транзисторе. При подключении нескольких светодиодов проблемы не возникают. Однако по мере увеличения нагрузки приходится ставить VT1 на крупный радиатор, обеспечивать эффективную вентиляцию рабочего объема. Подобные решения используют для создания мощных зарядных устройств.
Реле тока на микросхемах импульсных стабилизаторов
Для уменьшения потерь и поддержания широкого рабочего диапазона применяют готовые решения. В этом разделе представлен импульсный стабилизатор тока на микросхеме MAX771.
Контрольное напряжение подают с делителя (R1, R2). Если превышен установленный производителем уровень, автоматически корректируются выходные параметры.
Как сделать светодиодный стабилизатор
Простую конструкцию из резистора, конденсатора и стабилитрона можно собрать буквально за несколько минут. Используют универсальную монтажную плату или навесной способ сборки. Номинал электрического сопротивления выбирают с учетом параметров нагрузки. При необходимости устанавливают самодельный радиатор из подходящей алюминиевой пластины.
Схема блока питания на стабилитроне
Стабилизаторы тока на микросхемах
Применение такой элементной базы несколько увеличивает себестоимость проекта. Однако использование качественных микросхем обеспечивает хорошие стабилизационные характеристики в широком диапазоне входных параметров. С учетом хороших показателей эффективности можно рассчитывать на небольшое потребление электроэнергии.
TL431
В левой части рисунка показана схема типового подключения микросхемы TL 431 (DA1). Отмечена главная функция – поддержание напряжения 2,5 V на контрольном резисторе.
Применение микросхемы TL 4310
Такая конструкция пригодна для последовательного подключения нескольких десятков светодиодов суммарной мощностью 12-14 Вт. Силовые компоненты подбирают с учетом реальных потребностей. В представленном примере падение напряжения на транзисторе составит 25-35V. Рассеивается не более 1,75 Вт. В таком варианте радиатор не требуется.
Резистор на входе (R3) предотвращает повреждение конденсатора при включении блока в сеть. Ток в нагрузке ограничивает безопасным уровнем сопротивление R3. При выборе светодиодов специалисты рекомендуют делать запас по мощности, чтобы продлить срок службы одновременно с уменьшением тепловыделения.
LM7805, LM7812
В представленном ниже варианте схемотехники следует повысить входное напряжение. Его уровень должен быть больше на 2,5-3V, чем номинал стабилизации данной микросхемы.
В примере показан стабилизатор напряжения постоянного тока, который рассчитан на 9-11 Вт подключаемой нагрузки.
LM317
При подключении нагрузки 28-30 Вт эта микросхема обеспечивает стабилизацию тока 100 мА. Диапазон входного напряжения – от 207 до 240 V.
Стабилизатор и схема подключения светильника
В таблице на рисунке представлены значения регулировочного резистора, соответствующие определенным выходным параметрам.
При выборе подходящей схемы следует учесть в комплексе:
- минимальные и максимальные напряжения в цепи питания;
- точность стабилизации;
- эффективность устройства;
- сложность изготовления определенной конструкции собственными руками;
- стоимость комплектующих деталей, расходных материалов.
Заранее рекомендуется подготовить перечень инструментов, приспособлений, измерительных приборов. Аккуратное выполнение рассмотренных выше инструкций поможет создать функциональный стабилизатор без ошибок и лишних затрат.