Как найти силу тока через теплоту
Как найти силу тока через теплоту
Репетитор по физике
Задача 2. Закон Джоуля-Ленца (Тепловое действие тока )
Какое количество теплоты выделится в спирали электроплитки за время (t=1 минута), если напряжение в цепи (U=220 В ), а сила тока в ней (I=2 А ? )
Дать ответ в килоджоулях.
Показать ответ Показать решение Видеорешение
Запишем формулу закона Джоуля-Ленца и подставим числа:
(Q=2А cdot 220В cdot 60с=26400 Дж=26,4 Кдж)
Задача 3. Закон Джоуля-Ленца (Тепловое действие тока )
Какое количество теплоты выделит электрический паяльник за время (t=20 минут), если напряжение в его цепи (U=220 В ), а сила тока в ней (I=150 мА ? )
Дать ответ в килоджоулях.
Показать ответ Показать решение Видеорешение
Запишем формулу закона Джоуля-Ленца и подставим числа:
(Q=0,15А cdot 220В cdot 1200с=39600 Дж=39,6 Кдж)
Задача 4. Закон Джоуля-Ленца (Тепловое действие тока )
Определить значение силы тока в нагревательном элементе заднего стекла легкового автомобиля, если за время ( t=30 ; секунд ) он выделяет количество теплоты (Q=720 Дж .) Напряжение бортовой сети автомобиля (U=12 Вольт )
Показать ответ Показать решение Видеорешение
Запишем формулу закона Джоуля-Ленца и выразим силу тока,разделив обе части уравнения на (Ut ):
Задача 5. Закон Джоуля-Ленца (Тепловое действие тока )
Определить значение силы тока в спирали кипятильника, включенного в розетку с напряжением (U=220 Вольт, ) если за час его работы выделяется количество теплоты (Q=7,92 МДж. )
Показать ответ Показать решение Видеорешение
Запишем формулу закона Джоуля-Ленца и выразим силу тока,разделив обе части уравнения на (Ut ):
Задача 6. Закон Джоуля-Ленца (Тепловое действие тока )
За какое время комнатный электрообогреватель , включенный в розетку с напряжением (U=220 Вольт, ) передаст комнате количество теплоты (Q=5,94 МДж, ) если сила тока в нем составляет (I=15 Ампер ?)
Ответ дать в минутах.
Показать ответ Показать решение Видеорешение
Запишем формулу закона Джоуля-Ленца и выразим силу тока,разделив обе части уравнения на (IU ):
1800 секунд = 30 минут
Ответ: ( t= 30 минут )
Задача 7. Закон Джоуля-Ленца (Тепловое действие тока )
За какой промежуток времени в промышленной плавильной электопечи,включенной в сеть с напряжением (U=380 Вольт, ) выделится количество теплоты (Q=3,42 МДж, ) если сила тока в ней составляет (I=30 Ампер ?)
Ответ дать в минутах.
Показать ответ Показать решение Видеорешение
Запишем формулу закона Джоуля-Ленца и выразим силу тока,разделив обе части уравнения на (IU ):
300 секунд = 5 минут
Ответ: ( t= 5 минут )
Задача 8. Закон Джоуля-Ленца (Тепловое действие тока )
Найти напряжение электрического обогревателя дизельного топлива, установленного в топливном баке грузового автомобиля, если за время (t=10 минут ) он выделяет количество теплоты (Q=28,8 кДж, ) при силе тока (I=2 ; ) Ампера.
Показать ответ Показать решение Видеорешение
Запишем формулу закона Джоуля-Ленца и выразим напряжение,разделив обе части уравнения на (It ):
Как найти силу тока через теплоту
Задание 12. Закон Джоуля-Ленца можно записать в виде , где Q — количество теплоты (в джоулях), I — сила тока (в амперах), R — сопротивление цепи (в омах), a t — время (в секундах). Пользуясь этой формулой, найдите сопротивление цепи R (в омах), если Q = 1296 Дж, I = 9 А, t = 2 с.
Выразим сопротивление из закона Джоуля-Ленца:
И вычислим его, подставив в полученное выражение числовые значения:
Ом
- Все задания варианта
- Наша группа Вконтакте
- Наш канал
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- Вариант 1
- Вариант 1. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
- Решения заданий по номерам
- 1-5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- Вариант 2
- Вариант 2. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
- Решения заданий по номерам
- 1-5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- Вариант 3
- Вариант 3. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
- Решения заданий по номерам
- 1-5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- Вариант 4
- Вариант 4. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
- Решения заданий по номерам
- 1-5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- Вариант 5
- Вариант 5. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
- Решения заданий по номерам
Задания 1-5 полностью совпадают с ОГЭ 2020, вариант 7
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- Вариант 6
- Вариант 6. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
- Решения заданий по номерам
Задания 1-5 полностью совпадают с ОГЭ 2020, вариант 8
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
Внимание! Нумерация заданий в сборнике 2021 отличается от сборника 2020
- Вариант 7
- Задания 1-5 полностью совпадают с Вариант 5. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 1. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 8
- Задания 1-5 полностью совпадают с Вариант 5. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 2. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 9
- Задания 1-5 полностью совпадают с Вариант 19. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 3. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 10
- Задания 1-5 полностью совпадают с Вариант 20. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 4. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 11
- Задания 1-5 полностью совпадают с Вариант 13. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 5. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 12
- Задания 1-5 полностью совпадают с Вариант 14. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 6. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 13
- Задания 1-5 полностью совпадают с Вариант 11. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 7. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 14
- Задания 1-5 полностью совпадают с Вариант 12. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 8. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 15
- Задания 1-5 полностью совпадают с Вариант 35. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 9. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 16
- Задания 1-5 полностью совпадают с Вариант 36. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 10. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 17
- Задания 6-25 полностью совпадают с Вариант 11. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 1-5
- 14
- Вариант 18
- Задания 6-25 полностью совпадают с Вариант 12. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 1-5
- 14
- Вариант 19
- Задания 1-5 полностью совпадают с Вариант 15. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 13. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 20
- Задания 1-5 полностью совпадают с Вариант 16. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 14. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 21
- Задания 1-5 полностью совпадают с Вариант 29. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 15. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 22
- Задания 1-5 полностью совпадают с Вариант 30. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 16. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 23
- Задания 1-5 полностью совпадают с Вариант 31. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 17. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 24
- Задания 1-5 полностью совпадают с Вариант 32. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 18. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 25
- Задания 1-5 полностью совпадают с Вариант 27. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 19. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 26
- Задания 1-5 полностью совпадают с Вариант 28. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 20. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 27
- Задания 1-5 полностью совпадают с Вариант 1. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 21. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 28
- Задания 1-5 полностью совпадают с Вариант 2. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 22. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 29
- Задания 6-25 полностью совпадают с Вариант 23. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 1-5
- 8
- 14
- Вариант 30
- Задания 6-25 полностью совпадают с Вариант 24. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 1-5
- 8
- 14
- Вариант 31
- Задания 1-5 полностью совпадают с Вариант 23. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 25. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 32
- Задания 1-5 полностью совпадают с Вариант 24. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 26. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 33
- Задания 1-5 полностью совпадают с Вариант 4. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 31. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 34
- Задания 1-5 полностью совпадают с Вариант 21. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 32. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 35
- Задания 1-5 полностью совпадают с Вариант 17. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 33. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 36
- Задания 1-5 полностью совпадают с Вариант 18. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 34. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
Для наших пользователей доступны следующие материалы:
- Инструменты ЕГЭиста
- Наш канал
VII. Энергия электрического поля. Закон Джоуля Ленца
7.1. Сила тока в проводнике равномерно увеличивается от I=0 до некоторого максимального значения в течение времени t=10 с. За это время в проводнике выделилось количество теплоты Q=1 кДж. Определить скорость нарастания тока в проводнике, если сопротивление R его равно 3 Ом.
7.2. Лампочка и реостат, соединенные последовательно, присоединены к источнику тока. Напряжение U на зажимах лампочки равно 40 В, сопротивление R реостата равно 10 Ом. Внешняя цепь потребляет мощность P=120 Вт. Найти силу тока I в цепи.
7.3. Сила тока в проводнике сопротивлением R=15 Ом равномерно возрастает от I=0 до некоторого максимального значения в течение времени t=5 с. За это время в проводнике выделилось количество теплоты Q=10 кДж. Найти среднюю силу тока в проводнике за этот промежуток времени.
7.4. По проводнику сопротивлением R=3 Ом течет ток, сила которого возрастает. Количество теплоты Q, выделившееся в проводнике за время t=8 с, равно 200 Дж. Определить количество электричества q, протекшее за это время по проводнику. В момент времени, принятый за начальный, сила тока в проводнике равна нулю.
7.5. Сила тока в проводнике сопротивлением R=12 Ом равномерно убывает от I=5 А до I=0 в течение времени t=10 с. Какое количество теплоты Q выделяется в этом проводнике за указанный промежуток времени?
7.6. ЭДС батареи равна 20 В. Сопротивление внешней цепи равно 2 Ом, сила тока I=4 А. Найти КПД батареи. При каком значении внешнего сопротивления R КПД будет равен 99%?
7.7. Сила тока в проводнике сопротивлением R=100 Ом равномерно нарастает от I=0 до Imax=10 А в течение времени t=30 с. Определить количество теплоты Q, выделившееся за это время в проводнике.
7.8. К зажимам батареи аккумуляторов присоединен нагреватель. ЭДС батареи равна 24 В, внутреннее сопротивление r=1 Ом. Нагреватель, включенный в цепь, потребляет мощность P=80 Вт. Вычислить силу тока I в цепи и КПД h нагревателя.
7.9. При силе тока I1=3 А во внешней цепи батареи аккумуляторов выделяется мощность P1=18 Вт, при силе тока I2 = 1 А — соответственно P2=10 Вт. Определить ЭДС и внутреннее сопротивление r батареи.
7.10. Обмотка электрического кипятильника имеет две секции. Если включена только первая секция, то вода закипает через t1 = 15 мин., если только вторая, то вода закипает через t2=30 мин. Через сколько минут закипит вода, если обе секции включить последовательно? Параллельно?
7.11. Сила тока в проводнике сопротивлением R=120 Ом равномерно возрастает от I=0 до Imax=5 А за время t=15 с. Определить выделившееся за это время в проводнике количество теплоты.
7.12. Сила тока в проводнике сопротивлением R=100 Ом равномерно убывает от I=10 А до I =0 за время t=30 с. Определить выделившееся за это время в проводнике количество теплоты.
7.13. Определить напряженность электрического поля в алюминиевом проводнике объемом V=10 см 3 , если при прохождении по нему постоянного тока за время t=5 мин выделилось количество теплоты Q=2,3 кДж. Удельное сопротивление алюминия r=26 нОм·м.
7.14. Два цилиндрических проводника одинаковой длины и одинакового сечения, один из меди, а другой из железа, соединены параллельно. Определить отношение мощностей токов для этих проводников. Удельные сопротивления меди и железа равны соответственно 17 и 98 нОм·м.
7.15. Какую наибольшую мощность может отдать во внешнюю цепь элемент с электродвижущей силой 2 В и внутренним сопротивлением 0,1 Ом?
7.16. Светотепловая ванна, имеющая 12 параллельно соединенных ламп накаливания сопротивлением по 360 Ом каждая, включена в сеть напряжением 120 В. Какое количество теплоты выделится в такой ванне в течение 15 мин?
7.17. Через сколько времени в стерилизаторе с обмоткой из проволоки сопротивлением 18 Ом закипит 0,5 кг воды, если начальная температура воды 10 0 С и средний КПД при нагреве стерилизатора 50%? Стерилизатор включен в сеть постоянного тока напряжением 110 В.
7.18. К источнику тока с ЭДС 12 В присоединена нагрузка. Напряжение U на клеммах источника стало при этом 8 В. Определить КПД источника тока.
7.19. Внешняя цепь источника тока потребляет мощность P=0,75 Вт. Определить силу тока в цепи, если ЭДС источника тока 2 В и внутреннее сопротивление R=1 Ом.
7.20. Какая наибольшая полезная мощность Pmax может быть получена от источника тока с ЭДС 12 В и внутренним сопротивлением R=1 Ом?
7.21. Сила тока в проводнике сопротивлением R=10 Ом за время t=50 с равномерно нарастает от I1=5 А до I2=10 А. Определить количество теплоты Q, выделившееся за это время в проводнике
7.22. Сила тока в проводнике изменяется со временем по закону I=Isinwt. Найти заряд Q, протекающий через поперечное сечение проводника за время t, равное половине периода t, если начальная сила тока I=10 А, циклическая частота w=50p с -1 .
7.23. За время t=8 с при равномерно возраставшей силе тока в проводнике сопротивлением R=8 Ом выделилось количество теплоты Q=500 Дж. Определить заряд q, протекший в проводнике, если сила тока в момент времени t=0 равна нулю.
7.24. За время t=20 с при равномерно возраставшей силе тока от нуля до некоторого максимума в проводнике выделилось количество теплоты Q=4 кДж. Определить скорость нарастания силы тока, если сопротивление проводника R=5 Ом.
7.25. В проводнике за время t=10 с при равномерном возрастании силы тока от I1=5 А до I2=2 А выделилось количество теплоты Q=5 кДж. Найти сопротивление R проводника.
7.26. Определить количество теплоты Q, выделившееся за время t=10 с в проводнике сопротивлением R=10 Ом, если сила тока в нем, равномерно уменьшаясь, изменилась от I1= 10 А до I2=0.
ЭЛЕКТРОМАГНЕТИЗМ
VIII. Сила Ампера
8.1. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи I=1 кА. Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится на расстоянии, равном ее длине.
8.2. Тонкий провод в виде дуги, составляющей треть кольца радиусом 15 см, находится в однородном магнитном поле (В=20 мТл.). По проводу течет ток I=20 А. Плоскость, в которой лежит дуга, перпендикулярна линиям магнитной индукции, и проводящие провода находятся вне поля. Определить силу F, действующую на провод.
8.3. По тонкому проводу в виде кольца радиусом 20 см течет ток I=100 А. Перпендикулярно плоскости кольца возбуждено однородное магнитное поле с индукцией 20 мТл. Найти силу F, растягивающую кольцо.
8.4. Двухпроводная линия состоит из длинных параллельных прямых проводов, находящихся на расстоянии 4 мм друг от друга. По проводам текут одинаковые токи I=50 А. Определить силу взаимодействия токов, приходящуюся на единицу длины провода.
8.5. Шины генератора представляют собой две параллельные медные полосы длиной 2 м каждая, отстоящие друг от друга на 20 см. Определить силу взаимного отталкивания шин в случае короткого замыкания, когда по ним течет ток I=10 кА.
8.6. По двум проводникам длиной 1 м каждый текут одинаковые токи. Расстояние между проводами равно 1 см. Токи взаимодействуют с силой F=1 мН. Найти силу тока I в проводах.
8.7. По трем параллельным прямым проводам, находящимся на расстоянии а=10 см друг от друга, текут одинаковые токи I=100 А. В двух проводах направления токов совпадают. Вычислить силу F, действующую на отрезок длиной L= 1 м каждого провода.
8.8. По двум тонким проводам, изогнутым в виде кольца радиусом 10 см, текут одинаковые токи I = 10 А в каждом. Найти силу взаимодействия этих колец, если плоскости, в которых лежат кольца, параллельны, а расстояние между центрами колец равно 1 мм.
8.9. По двум одинаковым плоским контурам со стороной а=20 см текут токи I=10 А в каждом. Определить силу взаимодействия контуров, если расстояние d между соответственными сторонами контуров равно 2 мм.
8.10. По тонкому проволочному полукольцу радиусом R=50 см течет ток I=50 А. Перпендикулярно плоскости полукольца возбуждено однородное магнитное поле с индукцией В=0,01 Тл. Найти силу, растягивающую полукольцо.
8.11. Прямоугольная рамка со сторонами а=40 см и b=30 см расположена в одной плоскости с бесконечным прямолинейным проводом с током I=6 А так, что длинные стороны рамки параллельны проводу. Сила тока в рамке I1=1 А. Определить силы, действующие на каждую из сторон рамки, если ближайшая к проводу сторона рамки находится на расстоянии с=10 см, а ток в ней сонаправлен току I.
8.12. Шины электростанции представляют собой параллельные медные полосы длиной 3 м, находящиеся на расстоянии 50 см. При коротком замыкании по ним может пройти ток 10000 А. С какой силой взаимодействуют при этом шины?
8.13. Рядом с длинным прямым проводом, по которому течет ток I1=30 А, расположена квадратная рамка с током I2=2 А. Рамка и провод лежат в одной плоскости. Проходящая через середины противолежащих сторон ось рамки параллельна проводу и отстоит от него на расстояние b=30 мм. Сторона рамки а=20 мм. Найти силу, действующую на рамку , и работу, которую надо совершить, чтобы повернуть рамку вокруг ее оси на 180°.
8.14. По двум тонким проводам, изогнутым в виде кольца радиусом 20 см, текут одинаковые токи I = 0,1 А в каждом. Найти силу взаимодействия этих колец, если плоскости, в которых лежат кольца, параллельны, а расстояние между центрами колец равно 1 мм.
8.15. По двум одинаковым плоским контурам со стороной а=10 см текут токи I=0,1 А в каждом. Определить силу взаимодействия контуров, если расстояние d между соответственными сторонами контуров равно 3 см.
8.16. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи I=20 А. Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится на расстоянии, равном ее длине.
8.17. По тонкому проволочному полукольцу радиусом R=50 см течет ток I=50 А. Перпендикулярно плоскости полукольца возбуждено однородное магнитное поле с индукцией В=0,01 Тл. Найти силу, растягивающую полукольцо.
8.18. На линейный проводник длиной 35 см действует сила магнитного поля 0,1764 Н. Определить угол между направлением поля и тока, если по проводнику протекает ток в 12 А, а напряженность магнитного поля равна 5,1·10 4 А/м. Принять m=1.
8.19. Магнитное поле с напряженностью 3,35·10 4 А/м уравновешивает проводник весом 0,148 Н, по которому течет ток в 12,5 А. Угол между направлением проводника и направлением поля 90°. Определить длину проводника, находящегося в магнитном поле. Принять m=1.
8.20. Проволочный виток радиусом R=25 см расположен в плоскости магнитного меридиана. В центре установлена небольшая магнитная стрелка, способная вращаться вокруг вертикальной оси. На какой угол a отклонится стрелка, если по витку пустить ток силой I=15 А? Горизонтальную составляющую индукции земного магнитного поля принять равной В=20 мкТл.
8.21. По двум параллельным проводам длиной 3 м каждый текут одинаковые токи силой I=500 А. Расстояние между проводниками d=10 см. Определить силу F взаимодействия проводников.
8.22. По трем параллельным прямым проводам, находящимся на одинаковом расстоянии d=20 см друг от друга, текут токи одинаковой силы I=400 А. В двух проводах направления токов совпадают. Вычислить для каждого из проводов отношение силы, действующей на него, к его длине.
8.23. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две её стороны параллельны проводу. По рамке и проводу текут одинаковые токи силой I=200 А. Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится от него на расстоянии, равном ее длине.
8.24. Магнитная стрелка помещена в центре кругового витка, плоскость которого расположена вертикально и составляет угол j=30° с плоскостью магнитного меридиана. Радиус витка R=20 см. Определить угол a, на который повернется магнитная стрелка, если по проводнику пойдет ток силой I=25 А (дать два ответа). Горизонтальную составляющую индукции земного магнитного поля принять равной В=20 мкТл.
8.25. Две небольшие одинаковые катушки расположены так, что их оси лежат на одной прямой. Расстояние между катушками 200 мм значительно превышает их линейные размеры. Число витков каждой катушки N=100, радиус витков r=10 мм. С какой силой взаимодействуют катушки, когда по ним течет одинаковый ток I=0,10 А?
8.26. Две катушки, магнитные моменты которых равны р1=80 А·м 2 и р2=120 А·м 2 , расположены так, что их оси находятся на одной прямой. Расстояние между ними 100 см велико по сравнению с их диаметром и длиной катушки. Определить силу их взаимодействия.
Закон Джоуля-Ленца
Средняя оценка: 4.2
Всего получено оценок: 322.
Средняя оценка: 4.2
Всего получено оценок: 322.
Выделение тепла на проводниках – причина их перегорания, возникновения пожаров и других неполадок в электрооборудовании. Но это явление лежит также в основе электросварки и других технологий. Поэтому нужно понимать причины нагревания проводников и уметь рассчитывать численные характеристики этого процесса.
Природа тепла в проводниках
Удобно пользоваться аналогиями. Часто совокупность электронов рассматривают как электронный газ. Так, например, поступают при определении теплопроводности газов методом нагревания нити.
Из законов молекулярной физики известно, что температура и кинетическая энергия – два взаимоопределяющих параметра. Чем выше скорость движения молекул, тем выше температура. И наоборот: чем выше температура, тем быстрее движутся молекулы.
Теперь будем рассматривать электронный газ и более крупные частицы в нем – атомы в узлах кристаллической решетки проводника. При движении электроны – а именно это и происходит, когда наличествует электрический ток – могут соударяться с атомами проводника, чем вызывают изменение их кинетической энергии. Часть ее может быть потрачена на совершение атомом скачка – выхода из узла, часть выделится в виде тепла.
Рис. 1. Столкновение электронов с атомами решетки.
Другая полезная аналогия – трение жидкости (газа) о стенки сосуда. Здесь происходит тоже самое – движению электронов мешают силы трения (сопротивления). Работа, затрачиваемая на их преодоление, переходит в тепловую.
Помимо этого, движущиеся электроны, соударяясь, могут отцеплять от атомов стационарные электроны и занимать их места на орбиталях. Во время этих процессов происходит изменение энергии. Какая-то ее часть может вносить вклад в общий нагрев проводника.
Таковы механизмы. Но закон Джоуля-Ленца носит качественный характер. Его выводили эмпирическим путем, постановкой опытов с разными проводниками различной длинны и площади сечения, с разными значениями силы тока. В ходе них были выявлены некоторые закономерности:
- Количество выделяющегося тепла прямо пропорционально квадрату силы тока.
- Выделяемое тепло обратно пропорционально проводимости вещества. Например, медный проводник выделяет тепла меньше, чем железо, что связано с большей проводимостью меди.
- При увеличении площади сечения проводника количество теплоты уменьшается.
- При увеличении длинны проводника – количество теплоты возрастает.
Последние три характеристики – длинна, площадь и удельная проводимость проводника – определяют такую величину, как сопротивление.
Таким образом, нагревание проводника прямо зависит от его сопротивления и от квадрата силы тока – это словесная формулировка закона Джоуля-Ленца. Он достаточно универсален, справедлив также для полупроводников и электролитов.
На явлении нагревания проводников основана работа ламп накаливания, дуговой сварки, электрообогревателей. Потери энергии на преодоление сопротивления и выделяющееся тепло учитывают при проектировании электрических цепей различных приборов – от чайников до процессоров ЭВМ.
Математическая запись
Существует несколько вариантов записи закона Джоуля-Ленца. Первый, наиболее привычный, называется интегральной формой:
$Q = intlimits_
$Q = I^2 cdot R cdot t$
Она наиболее удобна, по ней как правило выполняют определение количества выделяемого на проводниках тепла на практике. Она же является математическим эквивалентом качественной формулировки закона, данной ранее. В дифференциальном виде формула закона Джоуля-Ленца записывается следующим образом:
$omega = j cdot E^2$, где $omega$ – энергия, выделяемая в единице объема, j – плотность электрического тока, а E – его напряженность.
Рис. 3. Плотность электрического потока.
Задачи
Решение:
$I^2 cdot R$ – есть мощность тока. Разделив Q на t, получим тепловую мощность. Тогда необходимое сопротивление рассчитаем по формуле:
Что мы узнали?
В ходе урока рассмотрели тепловое действие тока в проводниках и его причины, выяснили эмпирические закономерности, легшие в основу закона Джоуля-Ленца, а также рассмотрели его интегральную и дифференциальную формулировки. В закрепление урока решили задачу.