Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Микросхема импульсного стабилизатор напряжения тока

Импульсный стабилизатор напряжения

Импульсный стабилизатор напряжения в статье описан с высоким КПД, выполненный на микросхеме UC3843. Устройство имеет защиту от перегрузки по току. Проблема увеличения КПД источников питания особенно актуальна для преобразователей большой мощности с низким выходным напряжением (3…5 В). Ее удалось решить применением современных зарубежных элементов: специализированной микросхемы управления; диодов с малым падением напряжения и временем восстановления; полевых транзисторов с низким сопротивлением в открытом состоянии. На рисунке показана схема импульсного стабилизатора напряжения с защитой от перегрузки по току.

Основные технические характеристики

Входное напряжение, В 8…16

Выходное напряжение, В 5

Максимальный ток нагрузки, А 10

Амплитуда пульсаций выходного напряжения, мВ, не более 100

Нестабильность выходного напряжения при изменении входного напряжения, тока нагрузки и температуры окружающей среды, %, от номинального значения 2

Интервал рабочей температуры окружающей среды, °C -10…+70

Частота преобразования, кГц 100

Среднее значение КПД при максимальном токе нагрузки во всем интервале изменения входного напряжения, % 90

В импульсный стабилизатор напряжения применена микросхема UC3843. Здесь остановимся только на основных функциях ее узлов, участвующих в работе стабилизатора. Микросхема UC3843 имеет в своем составе узел запуска, который при напряжении питания более 7,5…8 В (вывод 7) переводит все узлы из режима ожидания в рабочее состояние. При этом источник образцового напряжения (вывод вырабатывает стабилизированное напряжение 5 В, а задающий генератор (вывод 4) — пилообразное напряжение, частоту и соотношение времени нарастания и спада которого определяют номиналы элементов R3 и С10. Выходной мощный буферный усилитель (вывод 6) формирует управляющее напряжение прямоугольной формы амплитудой, чуть меньшей напряжения питания микросхемы. Его частота, длительность импульса и паузы совпадают с аналогичными параметрами пилообразного напряжения задающего генератора.

Микросхема управления реализует широтно-импульсный способ стабилизации выходного напряжения. Для этого в ее состав включен узел сравнения на ОУ, на один вход подают часть образцового напряжения (2,5 В), а на другой — часть выходного с резистивного делителя напряжения R1R4. Элементы R2C8 — корректирующая цепь этого усилителя. Во время регулирования длительность выходного импульса начинает уменьшаться по сравнению с исходной, как только напряжение на выводе 2 микросхемы превысит значение 2,5 В. Частота же импульсов остается постоянной.

Для защиты стабилизатора от перегрузки по току в микросхеме предусмотрен быстродействующий компаратор. На один из его входов подано образцовое напряжение 1 В от встроенного источника, а на другой (вывод 3) — напряжение, пропорциональное току, протекающему через открытый транзистор VT2. Это напряжение формирует трансформатор тока Т1, первичная обмотка которого включена последовательно с транзистором VT2. Когда он находится в открытом состоянии, через вторичную обмотку трансформатора, диод VD1 и резистор R5 протекает ток, меньший тока первичной обмотки в к раз, где к = WII/wI — коэффициент трансформации Т1. Таким образом, на резисторе R5 формируется напряжение, точно повторяющее форму тока транзистора VT2, мгновенное значение которого в каждый момент времени определяется из выражения: UR5 = lvt2xR5/k.

В начале каждого периода управляющее выходное напряжение микросхемы открывает транзистор VT2, а при достижении напряжения на выводе 3 значения 1 В происходит его принудительное закрывание. Во время перегрузки стабилизатора этот процесс происходит каждый период, препятствуя тем самым увеличению тока через транзистор VT2, а значит, и через нагрузку. IRF4905 — р-канальный полевой транзистор фирмы INTERNATIONAL RECTIFIER. Его сопротивление в открытом состоянии — около 20 мОм, а задержка при открывании и закрывании — менее 0,1 мкс. Такие характеристики он приобретает только при управлении от мощного импульсного усилителя, обеспечивающего большой (в несколько А) ток перезарядки емкости затвор—исток и затвор—сток. В рассматриваемом стабилизаторе напряжения этот усилитель выполнен на транзисторах VT1.1, VT1.2 микросборки. Кроме того, он инвертирует управляющий сигнал, вырабатываемый микросхемой.

Выходной сглаживающий фильтр образуют конденсаторы С12—С17. Их число (шесть) и выбор типа достаточны для качественной фильтрации выходного напряжения без дополнительного высокочастотного фильтра. Входной П-образный фильтр необходим для подавления высокочастотных помех, возникающих из-за импульсного характера, потребляемого стабилизатором тока. Уменьшить коммутационные потери с одновременным повышением КПД стабилизатора стало возможным благодаря использованию в качестве VD2 диода Шоттки с малым падением напряжения и временем восстановления около 0,05 мкс.

Устройство выполнено на стандартных элементах, за исключением моточных. Дроссель L1 намотан на кольце К10х6х4,5 и содержит 5 витков в 6 проводов ПЭВ 0,5, уложенных равномерно по всему периметру кольца. Дроссель L2 выполнен на кольце К19х11 х4,8 из того же материала и содержит 12 витков в 10 проводов того же диаметра. Трансформатор Т1 намотан на кольце К10х6хЗ из феррита 2000НМ1. Вторичная обмотка WII выполнена проводом ПЭВ 0,2 и содержит 200 витков, равномерно уложенных по всему периметру кольца. Первичная обмотка представляет собой провод, проходящий через отверстие кольца, концы которого соединяют соответственно плюсовой вывод конденсаторов С2— С7 и исток транзистора VT2. При подключении трансформатора необходимо тщательно соблюдать правильную фазировку обмоток. Для качественной фильтрации высокочастотных помех применены безвыводные танталовые конденсаторы (С1 — С7, С12—С17) в корпусе D (конденсаторы для поверхностного монтажа) фирм NEC, NICHCON, TDK и др. Из отечественных подойдут оксидные конденсаторы К53-28, К53-25, К53-22. Правда, конденсаторы последних двух типов необходимо герметизировать после установки.

Читайте так же:
Автомобильный стабилизатор напряжения тока

В налаживании импульсный стабилизатор напряжения не нуждается, конечно, если качественно выполнен его монтаж. К особенностям работы микросхемы DA1 относится тот факт, что она не “любит” работать при значениях скважности управляющих импульсов менее 2, т. е. низком напряжении питания. Это проявляется в том, что пары импульсов соседних периодов имеют разную, но постоянную при данном напряжении питания длительность. Фактически же это означает, что форма пульсаций выходного напряжения получит еще одну огибающую на частоте вдвое ниже частоты работы задающего генератора. Такую особенность можно устранить подключением между выводами 3 и 4 микросхемы последовательной цепи из резистора сопротивлением 0,1…2 кОм и конденсатора емкостью 1000… 10000 пФ. Однако частота этих “паразитных” колебаний высока, практически не увеличивает амплитуду пульсаций выходного напряжения и никак не влияет на динамические свойства стабилизатора в целом.

Импульсный стабилизатор необходимо смонтировать на печатной плате с короткими и широкими проводниками. Чем меньше будет ее размер, тем меньше станут наведенные помехи, которые в большой степени определяют устойчивость работы устройства в целом. Транзистор VT2 и диод VD2 устанавливают на теплоотводе с эффективной площадью поверхности не менее 100 см2, причем для уменьшения наведенных помех указанные элементы следует установить через изолирующие прокладки, а сам теплоотвод электрически соединяют с минусовым выводом конденсаторов С2—С7. Правый по схеме вывод дросселя L2 следует соединить с плюсовым выводом конденсатора С12, а правый по схеме вывод резистора R4 — с плюсовым выводом конденсатора С17. С него же подают выходное напряжение на нагрузку.

Макет импульсный стабилизатор напряжения был изготовлен на двухсторонней печатной плате размерами 60×90 мм и толщиной 2 мм. С верхней стороны платы размещены “высокие” элементы: дроссели, трансформатор, микросхема, а с “нижней” — фильтрующие танталовые конденсаторы, транзисторная сборка VT1, транзистор VT2 и диод VD2 фланцами наружу. Через шесть отверстий, расположенных равномерно по периметру, плата привинчена к алюминиевой пластине-теплоотводу таких же, как и плата, размеров и толщиной 3 мм. Получилась плоская конструкция толщиной 18 мм. Для эффективного охлаждения стабилизатор установлен вертикально.

Размещено на реф.рф
Переменное напряжение прямоугольной формы такого генератора с помощью дифференцирующей RC цепочки преобразуется в пилообразное напряжение Uпил. В качестве резистора в данном случае используется R10 микросхемы, а внешний конденсатор применяется небольшой емкости.

В качестве узла ввода этого сигнала используются диоды VD3. VD6, включенные между дифференциальным усилителœем и триггером Шмитта. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, на резисторе R10 осуществляется сравнение двух напряжений – первое пропорционально изменению напряжения на нагрузке(как и в ИСН с РЭ) и снимается оно с коллектора VT11 дифференциального усилителя постоянного тока Uупт, а второе –напряжение пилообразной формы Uпил. В результате сравнения этих напряжений выделяется сигнал рассогласования, который подается на инвертирующий каскад VT7.

Напряжение пилообразной формы должно иметь размах, достаточный для перевода VT7 в состояние насыщения. Последний в открытом состоянии работает в режиме, близком к насыщению. Задержка моментов времени, в которые VT7 выходит из насыщения, по отношению к переднему фронту пилообразного напряжения зависит от того, насколько открыты транзисторы VT7, VT8. В случае если транзисторы почти заперты, а среднее напряжение между их базой и эмиттером, задаваемое потенциалом коллектора VT8, мало, то оно сравняется с линœейно уменьшающимся напряжением на выходе выпрямителя только в конце такта.

При возрастании потенциала на коллекторе VT11(ᴛ.ᴇ. при увеличении напряжения на нагрузке) растет и напряжение Uупт. Такому напряжению соответствует большая пауза между импульсами напряжения (меньшая длительность импульсов напряжения), снимаемыми с общей эмиттерной нагрузки транзисторов VT7, VT8 — R9(UБVT6) микросхемы.

Транзисторы VT6, VT5, VT4являются усилителями импульсов, снимаемых с резистора R9. Усиленные импульсы с коллектора VT4 через внешний делитель напряжения (R6, R3) подаются на базу VT3, являющегося одним из транзисторов ключа, входящего в состав ИС. Этот ключ (VT2, VT3) управляет в данной схеме ИСН внешним силовым ключом, выполненным также в виде составного транзистора (VT2, VT3). Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, при увеличении, к примеру, напряжения питания на входе ИСН напряжение Uн = (tи /T)Uп на нагрузке останется неизменным так как уменьшилось время открытого состояния регулирующего транзистора силовой части.

Импульсный стабилизатор напряжения с ШИМ — понятие и виды. Классификация и особенности категории «Импульсный стабилизатор напряжения с ШИМ» 2017, 2018.

Читайте также

Микросхема импульсного управления КР142ЕП1 обеспечивает работу ИСН в основном в релейном двухпозиционном режиме, но в ИС предусмотрена также возможность для создания стабилизатора напряжения с широтно-импульсной модуляцией. Например, если по тем или иным причинам. [читать подробнее].

Читайте так же:
Аналог lm317 стабилизатор тока

Импульсный стабилизатор напряжения

Преобразование напряжения необходимо для того, чтобы реализовать возможность работы различных устройств от сети переменного тока. Кроме того, питание электронных схем разными величинами напряжения вынуждает выполнять не только превращение переменного электричества в постоянное, но и повышение или понижение разности потенциалов до нужных параметров.

Основы импульсного преобразования

Работа подобных устройств, их ещё называют импульсными стабилизаторами (ИС), основана на ключевой стабилизации. В схеме имеется элемент, который выполняет регулировку выходных параметров за счёт своего запирания-отпирания.

В обычную трансформаторную схему входит трансформатор низкой частоты, имеющий первичную и вторичную обмотку. Импульсное преобразование тоже подразумевает наличие трансформатора, но уже высокочастотного.

Внимание! Высокочастотные импульсные трансформаторы обладают меньшими габаритами, дешевле, но их мощность выше.

Импульсные преобразователи напряжения (ИПН) допускают использование схем трёх типов:

  • повышающей;
  • понижающей;
  • инверторной.

ИПН обладают высоким КПД и малыми габаритами. Они включают в свой состав следующие элементы:

  • блок питания (источник питания);
  • ключ – элемент коммутации;
  • накопитель энергии индуктивной природы – дроссель, катушка;
  • диод блокировки;
  • фильтр выходного напряжения – конденсатор большой емкости.

Фильтр обычно включается параллельно нагрузке.

Принцип работы

Импульсный стабилизатор напряжения использует принцип сравнения опорного напряжения с напряжением на выходе. Схема позволяет регулировать длительность открытия ключа. Входное напряжение от источника питания (ИП) пропускается ключом по сигналу управления заданными частями (импульсами) с учётом того, что средний потенциал (пониженный или повышенный) был стабильным.

Сравнение с линейным стабилизатором

Чтобы сравнить два принципа преобразования, нужно вспомнить, что линейные стабилизаторы (ЛС) – это обычно делитель напряжения. У него нестабильный потенциал подаётся на вход делителя, а стабильный – снимается со второго плеча (нижнего). Принцип стабилизации заключается в постоянном изменении сопротивления верхнего плеча схемы таким образом, чтобы на нижнем оно оставалось стабильным.

К сведению. Когда отношение Uвх/Uвых велико, то КПД линейного стабилизатора очень низкий. Это связано с потерями энергии на регулирующем резисторе. Он греется, оттого часть мощности на входе теряется.

У таких сборок есть свои плюсы, а именно: простота схемы, минимум элементов и неимение помех. По сравнению с линейными, импульсные стабилизаторы (ИС) сложнее, но работают стабильнее при правильно подобранной схеме.

В ИС могут возникать автоколебания, которые приводят к частичной неработоспособности или полному выходу преобразователя из строя. Это происходит в случае, когда импеданс источника Uвх превысит значение импеданса ИС, тогда при снижении Uвх повышается ток на входе.

Функциональные схемы по типу цепи управления

По виду управляющей цепи можно выделить несколько рабочих схем, включающих в себя:

  • триггер Шмитта;
  • ШИМ – широтно-импульсную модуляцию;
  • ЧИМ – частотно-импульсную модуляцию.

Важно! Импульсные стабилизаторы – это устройство с автоматическим регулированием, ориентирующееся на опорное напряжение, которое служит эталонным параметром для схемы регулирования.

С триггером Шмитта

При таком построении схемы стабилизации верхний и нижний пороги срабатывания триггера сравниваются с Uвх. Для этой цели используется компаратор – устройство сравнения. Ключ размыкается в момент, когда выходное напряжение сравняется с напряжением срабатывания триггера (Umax). Энергия, накопившаяся за это время, выдаётся на нагрузку, и Uвых после этого спадает. Как только её величина достигнет Umin (нижнего порога), триггер переключается, замыкая ключ.

Такой способ называется стабилизацией с двухпозиционной регулировкой или релейной. Схемы с триггером Шмитта имеют на выходе устройства напряжения с величиной пульсации, обусловленной разностью порогов срабатывания. Эту пульсацию практически устранить невозможно.

В ИС с триггером Шмитта частотное преобразование зависит от Uвх и Iн (тока нагрузки) и является переменным.

С широтно-импульсной модуляцией

На выходе таких схем получают Uср (среднее), на которое влияют скважность импульсов и Uвх. Операционный усилитель (ОУ) представляет собой схему сравнения Uвых и Uоп (опорного) путём вычитания и последующего усиления. Результат поступает на модулятор, который подстраивает свои параметры в зависимости от этого результата.

Модулятор изменяет (в сторону увеличения) отношение времени, при котором ключ открыт, к периоду тактового импульса генератора, если Uвых С частотно-импульсной модуляцией

Подобные сборки отличаются тем, что скважность импульсов (частота) напрямую зависит от понижения Uвх или увеличения Iн. При этом длительность отпирающего ключ импульса неизменна. Частота подачи импульсов подчинена сигналу разности Uвых и Uоп. Моностабильный мультивибратор, имеющий управляемую запускающую частоту, может смело справиться с подачей команд на ключ.

Основные схемы силовой части

В зависимости от назначения ИС, можно выделить три базовых модели его построения:

  • понижающая;
  • повышающая;
  • инвертирующая.
Читайте так же:
Стабилизатор тока для стабилитрона

Независимо от конструктивного исполнения и назначения ИС, устройствами, использующимися в роли ключа, могут быть:

  • тиристор;
  • транзистор (биполярный или полевой).

Основная задача подобного элемента – отрываться или закрываться по команде, поступающей на управляющий электрод.

Преобразователь с понижением напряжения

Обычно уменьшить величину напряжения необходимо чаще, потому такие ИС более востребованы.

У понижающего стабилизатора напряжения, приведённого на схеме, ключ на полевом транзисторе VT1 откроется при подаче на него управляющего напряжения. Ток от плюсовой клеммы будет поступать на нагрузку через сглаживающий дроссель L1. Включенный параллельно в цепь диод VD1 в данный момент не пропускает ток. После размыкания ключа цепь тока следующая: дроссель L1 – нагрузка – общий провод – диод VD1 – дроссель L1. При этом ток, проходящий через дроссель, не прекратится мгновенно, а будет постепенно уменьшаться.

Важно! У дросселей, имеющих большую индуктивность, он не становится равным нулю до начала следующего открытия ключа. Установка таких элементов нецелесообразна из-за увеличения габаритов и стоимости.

Конденсатор C1 в это время будет разряжаться на нагрузку и поддерживать U вых. Емкость C вместе с индуктивностью L образует фильтр, снижающий размах пульсаций.

Преобразователь с повышением напряжения

В отличие от понижения Uвх, этот тип схем используют для питания цепей нагрузки, которым для работы необходимо напряжение выше, чем у источника.

Компоненты схемы те же самые, но включены иначе. При открытом транзисторе диод закрыт, и на дросселе линейно нарастает ток. При запирании ключа ток начинает двигаться по цепи: плюсовая клемма – дроссель L1 – диод VD1 – нагрузка – минусовая клемма. Конденсатор C1 в это время будет заряжаться. Он будет поддерживать ток на нагрузке во время своего разряда на неё при следующем открытии ключа.

Инвертирующий преобразователь

Подобная сборка также не имеет гальванической развязки между входным и выходным каскадами. В ней совсем иное включение дросселя, конденсатора и нагрузки. Они расположены параллельно.

При открытом ключе VT1 ток протекает по цепи: плюсовая клемма – транзистор – дроссель – минусовая клемма. Дроссель накапливает энергию при содействии магнитного поля. Когда транзистор закрывается, то цепь прохождения тока меняется: дроссель – конденсатор C1 – диод VD1 – дроссель. Энергия дросселя и энергия конденсатора будут полностью отдаваться нагрузке. Амплитуда пульсации целиком зависит от ёмкости C1. В этот момент напряжение на нагрузке не меняется, несмотря на то, что ток через С1 спадает почти до нуля.

Кстати. Выходное напряжение у инвертирующих ИС может отличаться от напряжения источника питания, как в большую, так и в меньшую сторону.

Влияние диода на КПД

Включенный в электрическую цепь диод вызывает на себе падение напряжения от 0,4 до 0,7 В. При токе от нескольких ампер и низком Uвых на элементе происходит потеря мощности, что приводит к снижению КПД. Применяют альтернативный вариант – замену диода на полевой транзистор. Подбирают такой, чтобы в открытом состоянии падение напряжения на нём было минимальным.

Внимание! Можно в схемах вместо диода поставить ещё один ключ, который будет работать в противофазе с основным.

Гальваническая развязка

Чтобы обезопасить человека при эксплуатации ИС, применяют гальваническую развязку. Для этого включают в схему разделительный трансформатор или дроссель с дополнительной обмоткой. На рабочих частотах 20 кГц – 1 МГц они не столь габаритны, как трансформаторы для частоты переменного тока 50 Гц. В управляющих цепях для развязки устанавливают оптроны (оптопары).

Особенности использования

Импульсные стабилизаторы могут использоваться как драйверы для светодиодов и led-ламп. Кроме того, их применяют в различных устройствах, таких как:

  • блоки питания ЖК телеприёмников;
  • оборудование навигации;
  • источники питания для компьютеров и устройств цифровых систем.

Импульсные стабилизаторы используют для зарядных устройств и преобразования переменного тока в постоянное электричество.

Фильтрация импульсных помех

Сильные помехи, издаваемые импульсным стабилизатором напряжения (ИСН) в моменты коммутации ключа (броски тока и напряжения), необходимо подавлять. Для этого требуется применять фильтры и размещать их на входе и выходе.

Входное сопротивление

У ИСН, работающих под нагрузкой, при увеличении Uвх уменьшается ток на входе (Iвх). Это значит его входное сопротивление отрицательно дифференциальное. При подключении ИСН к источникам, у которых внутреннее сопротивление велико, возможна нестабильная работа.

Использование в сетях переменного тока

Для подключения к источнику переменного тока перед ИСН устанавливают выпрямитель и фильтр. Эта зона, где возникает опасность поражения человека током. Элементы, входящие в эту зону, должны быть закрыты от прикосновения или отмечены маркером (графическое и цветовое предупреждение).

Преимущества и недостатки

Все плюсы и минусы для импульсных стабилизаторов можно свести в одну таблицу.

Преимущества ОС-регулирования

Обратная связь при регулировании напряжения в ИС является важной опцией для импульсных стабилизаторов. Она позволяет поддерживать на выходе устройства напряжение стабильной величины, чутко следя за бросками напряжения и тока. В ИСН применяется широкополосная ОС (чем шире интервал частот, тем меньше уровень пульсации в результате).

Читайте так же:
Для чего служит стабилизатор напряжения тока

Доступность на рынке радиодеталей комплектующих для построения ИСН даёт возможность собрать своими руками любую из схем импульсных стабилизаторов. Использование в них готовых стабилизаторов на интегральных микросхемах (ИМС) и ключей на полевых транзисторах делает устройство максимально компактным.

Видео

Импульсный стабилизатор на микросхеме xl4015

Данный обзор посвящён модулю импульсного стабилизатора, который предлагается интернет-магазинами под названием «5A Lithium Charger CV CC Buck Step Down Power Module LED Driver». Таким образом модуль представляет собой импульсный понижающий преобразователь, предназначенный для зарядки литий-ионных аккумуляторов в режимах CV (постоянное напряжение) и СС (постоянный ток), а также для питания светодиодов. Стоит данное устройство около 2-х USD. Конструктивно модуль представляет собой печатную плату, на которой установлены все элементы, включая сигнальные светодиоды и органы регулировки. Внешний вид модуля представлен на рис.1.

Чертёж печатной платы представлен на рис. 2.

Согласно спецификации изготовителя модуль имеет следующие технические характеристики:

  • Входное напряжение 6-38 В постоянного тока.
  • Выходное напряжение регулируемое 1.25-36 В постоянного тока.
  • Выходной ток 0-5 А (регулируемый).
  • Мощность в нагрузке до 75 ВА.
  • КПД более 96%.
  • Имеется встроенная защита от перегрева и короткого замыкания в нагрузке.
  • Размеры модуля 61.7х26.2х15 мм.
  • Масса 20 грамм.

Сочетание невысокой цены, малых размеров и высоких технических характеристик вызвало у автора интерес и желание экспериментально определить основные характеристики модуля.
Производитель не приводит схему электрическую принципиальную, по этому её пришлось рисовать самостоятельно. Результат этой работы представлен на рис. 3.

Основой устройства является микросхема DA2 XL4015, представляющая собой оригинальную китайскую разработку. Данная микросхема весьма похожа на популярную LM2596, но отличается улучшенными характеристиками. Видимо это достигается применением в качестве силового ключа мощного полевого транзистора. Описание этой микросхемы приведено в Л1. В данном устройстве микросхема включена в полном соответствии с рекомендациями изготовителя. Переменный резистор “CV” является регулятором выходного напряжения. Цепь регулируемого ограничения выходного тока выполнена на операционном усилителе DA3.1. Этот усилитель сравнивает падение напряжения на токоизмерительном резисторе R9 с регулируемым напряжением, снимаемым с переменного резистора “CC”. С помощью этого резистора можно задать желаемый уровень ограничения тока в нагрузке стабилизатора.

Если заданное значение тока будет превышено, то на выходе усилителя появится сигнал высокого уровня, красный светодиод HL2 откроется и напряжение на входе 2 микросхемы DA2 повысится, что приведёт к снижению напряжения и тока на выходе стабилизатора. Кроме того свечение HL2 будет сигнализировать о том, что модуль работает в режиме стабилизации тока (СС). Конденсатор С5 должен обеспечивать устойчивость узла регулирования тока.

На втором операционном усилителе DA3.2 собран сигнализатор снижения тока в нагрузке до значения менее 9% от заданного максимального тока. Если ток превышает указанное значение, то светится синий светодиод HL3, в противном случае светится зелёный светодиод HL1. При зарядке литий-ионных аккумуляторов снижение зарядного тока является одним из признаков окончания зарядки.
На микросхеме DA1 собран стабилизатор с выходным напряжением 5В. Это напряжение используется для питания операционного усилителя DA3, также оно используется для формирования опорного напряжения ограничителя тока и сигнализатора снижения тока.

Падение напряжения на токоизмерительном резисторе никак не компенсируется, по этому с ростом тока в нагрузке выходное напряжение стабилизатора снижается. Чтобы уменьшить данный недостаток величина токоизмерительного резистора выбрана достаточно маленькой (0.05 Ома). Из-за этого дрейф операционного усилителя DA3 может вызвать заметную нестабильность как уровня ограничения выходного тока так и уровня срабатывания сигнализатора.
Испытания модуля показали, что выходное сопротивление стабилизатора в режиме стабилизации напряжения (CV) практически полностью определяется токоизмерительным резистором и составляет около 0.06 Ома.
Коэффициент стабилизации напряжения около 400.
Для оценки тепловыделения на вход модуля было подано напряжение 12В. На выходе было установлено напряжение 5В при нагрузке сопротивлением 2.5 Ома (ток 2А). Через 30 минут микросхема DA2, дроссель L1 и диод VD1 нагрелись до 71, 64 и 48 градусов Цельсия соответственно.

Работа в режиме стабилизации тока в нагрузке (СС) сопровождалась переходом микросхемы DA2 в режим формирования пачек импульсов. Частота следования и длительность пачек изменялись в широких пределах в зависимости от величины тока. Эффект стабилизации тока при этом имел место, но пульсации на выходе модуля существенно возрастали. Кроме того работа устройства в режиме СС сопровождалась довольно громким писком, источником которого являлся дроссель L1.
Работа сигнализатора снижения тока нареканий не вызвала. Модуль успешно выдерживал короткое замыкание в нагрузке.

Таким образом модуль работоспособен как в режиме CV, так и в режиме СС, но при его использовании следует учитывать вышеописанные особенности.
Данный обзор написан по результатам исследования одного экземпляра устройства, что делает полученные результаты чисто ориентировочными.
По мнению автора описанный импульсный стабилизатор может быть с успехом использован, если требуется дешёвый, компактный источник питания с удовлетворительными характеристиками.

Читайте так же:
Стабилизаторов напряжения переменного тока lider

В сегодняшней статье хочу сделать небольшой обзор понижающего преобразователя на XL4015. Этот дешевый модуль на удивление очень мощный для своего маленького размера.

Модуль на XL4015 имеет КПД до 96%, мощность в нагрузке 75ВТ, при максимальном токе 5А. Питается модуль от 6В до 38В, выходное напряжение от 1,25В до 36В. Надо помнить, что разница между входящим и исходящим напряжением не менее 2В. В микросхеме есть защита от перегрева кристалла, а так же защита от короткого замыкания.

Выглядит модуль вот так

Размеры модуля 26*62*16ММ. Высота замерена по самой высокой детали, дросселю.
Пора перейти к схеме модуля с регулировкой напряжения и тока XL4015
Схема преобразователя XL4015

Основой всей схемы является XL4015. Которая чем то напоминает lm2596, но имеет на борту полевой транзистор, а так же выходной ток до 5А
Эта микросхема импульсный понижающий преобразователь. Управление микросхемой происходит через 2-ю ножку называемая FeedBack. Ножка FB это вход компаратора ошибки с фиксированным напряжением 1,25В.

Ограничение напряжения устанавливается переменным резистором CV 10к в составе резисторного делителя R3иCV
Ограничение выходного тока построено на датчике тока которым выступает шунт на 0,05Ом. Падение напряжения на нем сравнивается с напряжением на компараторе, установленным переменным резистором СС 1к. Индикация работы в режиме стабилизатора тока осуществляется красным светодиодом

На втором ОУ собран индикатор нагрузки. Если нагрузка меньше 9% от максимального тока, светится зеленый светодиод, если нагрузка больше- синий светодиод

Смысл от от этого индикатора в блоке питания считаю бесполезным, а вот сигнализатор токов удобно использовать как индикатор заряда аккумулятора.

Испытания XL4015
Пришло испытать модуль
На вход подаю напряжение 23В от конденсаторного фильтра лабораторного блока питания, нагрузка на модуле лампа 12В с мото фары ближний свет
Напряжение под нагрузкой просело до 18,6В при токе 4А, напряжение на выходе 12,3В ток 4А. Если мои расчеты верны то КПД этой схемы 65%.
Под такой нагрузкой за первые 5 минут схема хорошенько нагрелась, проработала еще пол часа и испустила дух.

Тот самый белым дым, на котором работают все микросхемы и транзисторы, микросхема выпустила. После замены микросхемы и диода все нормально заработало, но я больше ее та не нагружал. Скорее всего первым умер диод и увел за собой микросхему
Плата после замены, диод временно заменил на двойной диод с блока питания ПК
Микросхема выглядит вот так

Вывод напрашивается такой, модуль преобразователя XL4015 великолепно подходит для многих задач и несомненно найдет место в мастерской, но с отводом тепла надо что-то делать
Рекомендую посмотреть статью про универсальное зарядное плюс блок питания на Xl4015

Покупка модуля XL4015
Пару слов о том, где прикупить такой модуль. Естественно, лучшая цена за товар будет именно при заказе с Китая. Проблематично ждать месяц, но если уж экономить,то лучше при прямой покупке
Приобрести модули можно по этой ссылке цена за один 92 рубля, доставка бесплатна

Собственно — вот. Микросхема регулируемого стабилизатора напряжения очень схожа по функционалу с LM2596,которую многие так «полюбили», отличается только лишь отсутствием прямого вывода отключения питания микросхемы и, собственно, максимальным током.
Даташит на XL4015

Естественно, как вы знаете, подключать к таким стабилизаторам напряжения нужно резистивную схему соединения светодиодов…

Транзистор, коммутирующий дополнительный подстроечный резистор «Стоп» — можно заменить простым реле (это уж кому как удобнее и проще)…

Сначала настраивается желаемая яркость (т.е. подстраивается выходное напряжение) светодиодного модуля для режима «Габарит», а потом — для режима «Стоп»…

При входящем напряжении на стабилизатор 14,5-15В и выходном напряжении 12В при нагрузке в 3А — силовые элементы стабилизатора не переходят границы дозволенного по нагреву… На 4,5А — не пробовал давать нагрузку, но думаю, что этого будет многовато для элементов драйвера… Защиты от КЗ на выходе — нет, будьте внимательны… В целом — мне по нраву эти микросхемы…

Многие задавались вопросом по поводу возможности сделать «Стоп-габарит» на одном стабилизаторе c LM2596… это почти тоже самое, так что можете пробовать «такое» и со стабилизаторами на LM2596…

И еще не менее важное: можно реализовать вместо «Стоп-габарит» — «Американский габарит-поворот» на одноконтактной оранжевой лампе 21W ))))…
Правильного питания, минимальной температуры и «почти вечной» работы вашим светодиодам, стабилизаторам и драйверам!

голоса
Рейтинг статьи
Ссылка на основную публикацию