Параметрический стабилизатор с усилителем тока
Расчет и анализ параметрического стабилизатора напряжения (MS EXCEL)
Параметрические стабилизаторы напряжения до сих пор используются для питания маломощных устройств электронных изделий, поэтому необходимо уметь их рассчитывать.
Зачастую при повторении готовых конструкций, условия функционирования которых отличаются от рекомендованных разработчиком, требуется провести анализ работы параметрического стабилизатора напряжения для уточнения значения сопротивления балластного резистора.
Указанные задачи решены с помощью разработанного автором файла в Microsoft Excel. Приведено два варианта расчета параметрического стабилизатора напряжения и расчет для анализа условий работы стабилитрона в готовой схеме.
Содержание / Contents
- 1 Основные соотношения для расчета параметрического стабилизатора на стабилитроне [1 – 5]
- 2 Первый вариант расчета параметрического стабилизатора [2, 4, 5]
- 2.1 Пример расчета №1
- 2.2 Пример расчета №2
- 3 Второй вариант расчета параметрического стабилизатора [3 — 5]
- 3.1 Пример расчета №3
- 4 Анализ работы параметрического стабилизатора [1 – 5]
- 4.1 Пример анализа №1
- 5 Итог
- 6 Файлы
- 7 Упомянутые источники
↑ Основные соотношения для расчета параметрического стабилизатора на стабилитроне [1 – 5]
На рис. 1 показана принципиальная схема параметрического стабилизатора: Uвх – входное нестабилизированное напряжение, Uвых=Uст – выходное стабилизированное напряжение, Iст – ток через стабилитрон, Iн – ток нагрузки, R – балластный (ограничительный, гасящий) резистор.
Uвх=Uст+(Iн+Iст)R=Uст+IR, (1)
I= Iн+Iст – ток, протекающий через балластный резистор R.
Как видно из рис. 1, параметрический стабилизатор на кремниевом стабилитроне представляет собой делитель напряжения, состоящий из балластного резистора R с линейной Вольт — амперной характеристикой (ВАХ) и стабилитрона VD1, который можно рассматривать как резистор с резко нелинейной ВАХ.
При изменении напряжения Uвх изменяется ток через делитель, приводящий к изменению падения напряжения на резисторе R, а напряжение на стабилитроне, следовательно, на нагрузке Rн практически не изменяется.
Малое изменение напряжения на нагрузке в диапазоне от Uст min до Uст max соответствует изменению тока через стабилитрон от Iст min до Iст max. Причем, минимальный ток через стабилитрон соответствует минимальному входному напряжению и максимальному току нагрузки, что достигается при сопротивлении балластного резистора
R=(Uвх min-Uст min)/(Iн max+Iст min). (2)
В свою очередь, максимальный ток через стабилитрон будет протекать при минимальном токе нагрузки и максимальном входном напряжении.
Несложно найти условия работы стабилизатора:
ΔUвх=ΔUст+R(ΔIст-ΔIн), (3)
где ΔUвх=Uвх max-Uвх min, ΔUст= Uст max-Uст min, ΔIст=Iст max- Iст min, ΔIн= Iн max-Iн min.
Положим для упрощения ΔUст=0 и проанализируем выражение (3).
Если изменение тока нагрузки незначительно, выражение для условия работы стабилизатора упрощается:
КПД параметрического стабилизатора определяется из выражения:
КПД=Uст Iн /(Uвх (Iн + Iст)=1/(Nст(1+ Iст/Iн)), (5)
где Nст=Uвх/Uст – коэффициент передачи стабилизатора; обычно Nст=1,4…2.
Из выражения (5) следует, что чем ниже коэффициент передачи стабилизатора и чем меньше отношение тока через стабилитрон к току нагрузки, тем выше КПД.
Основным параметром стабилизатора напряжения, по которому оценивают его качество работы, является коэффициент стабилизации:
Kст=(ΔUвх/Uвх)/(ΔUвых/Uвых)= RUст/rдUвх=R/Nстrд=KфКПД, (6)
где rд — динамическое сопротивление стабилитрона; Kф – коэффициент фильтрации.
↑ Первый вариант расчета параметрического стабилизатора [2, 4, 5]
Исходными данными для расчета служат: Uвых, Iн, ΔIн, Uвх, ΔUвх.
Для получения требуемого выходного напряжения по справочнику выбираем стабилитрон с параметрами: Uст= Uвых, Iст max, Iст min, rд.
Требуемоемое входное напряжение рассчитываем исходя из крайних оптимальных коэффициентов передачи стабилизатора Nст=1,4…2, который также может быть выбран пользователем в любом необходимом диапазоне Nст:
Далее выбираем рабочий ток через стабилитрон Iст р примерно из середины диапазона допустимых значений, убедившись при этом, что Iст р> Iн:
Iст р=0,5(Iст min+Iст max)> Iн.
Вычислим сопротивление балластного резистора:
Рассчитаем с двукратным запасом мощность балластного резистора:
Здесь учтен запас в 20%, необходимый для надежной работы стабилитрона. Принятое при расчете наибольшее рабочее значение тока через стабилитрон не более 0,8 от справочного Iст max вызвано соображениями эксплуатационной надежности устройства, чтобы мощность, рассеиваемая на стабилитроне была ниже предельной. Для гарантированного обеспечения требуемого коэффициента стабилизации минимальное рабочее значение тока через стабилитрон Iст р min принято в расчете в 1,2 раза большим, чем Iст min.
Также вычислим параметры стабилизатора, определяющие его качество и эффективность – коэффициент стабилизации Kст=(ΔUвх/Uвх)/(ΔUвых/Uвых)= R/(rдNст),
коэффициент полезного действия КПД=Uст Iн /(Uвх (Iн + Iст))=1/(Nст(1+ Iст/Iн)),
и коэффициент фильтрации Kф=Kст/КПД.
↑ Пример расчета №1
Рассчитаем параметрический стабилизатор напряжения со следующими характеристиками: стабилизированное напряжение на нагрузке Uн=9 В; ток в нагрузке Iн=10 мА; изменение тока в нагрузке ΔIн=2 мА; изменение входного напряжения ΔUвх=10%.
Выберем стабилитрон типа Д814Б, для которого Uст= Uн=9 В; rд=10 Ом; Iст max=36 мА; Iст min=3 мА.
Заносим приведенную выше информацию в соответствующие ячейки исходных данных (выделены светло-голубой заливкой) листа «Первый вариант расчета» таблицы Microsoft Excel «Расчет и анализ работы параметрического стабилизатора напряжения.xlsx» и тут же получаем результаты вычислений в расчетных ячейках, выделенных светло-коричневой заливкой:
входное напряжение Uвх=15,0 В; сопротивление балластного резистора R=240 Ом, мощность балластного резистора с двукратным запасом Po=0,3 Вт; Kст=15,0, КПД=24%, Kф=62,5 (см. рис. 2).
Выбираем резистор сопротивлением 240 Ом мощностью 0,5 Вт.
Предположим, что на входе стабилизатора имеются пульсации переменного напряжения амплитудой Uп вх=0,1 В=100 мВ. Амплитуда пульсаций на выходе стабилизатора составит Uп ст= Uп вх/Kф=100/62,5=1,6 мВ.
↑ Пример расчета №2
Произведем расчет параметрического стабилизатора для усилителя «Green Lanzar» на N-канальных MOSFET-ах. Симметричный усилитель с квазикомплементарным выходом [6] для питающих напряжений Uп=Uвх=±25 В; ±35 В и ±45 В.
Расчет выполним для параметрического стабилизатора положительной полярности (R5, VD1, C2), поскольку другой стабилизатор, отрицательной полярности (R6, VD2, C4) отличается только направлением включения стабилитрона.
Подготовим исходные данные: стабилизированное напряжение на нагрузке Uн=12 В, ток в нагрузке Iн=(12-0,5)/R2=11,5/10=1,15 мА, ΔIн=0,115 мА, изменение входного напряжения ΔUвх=10%.
Выберем стабилитрон BZX55C12, имеющий следующие параметры: Uст= Uн=12 В; rд=20 Ом; Iст max=32 мА; Iст min=5 мА.
Результаты вычислений показаны на рис. 3; для Uп=±25 В R5=R6=1,3 кОм (0,25 Вт); для Uп=±35 В R5=R6=2,4 кОм (0,5 Вт); для Uп=±45 В R5=R6=3,6 кОм (1 Вт).
↑ Второй вариант расчета параметрического стабилизатора [3 — 5]
Итак, исходными данными являются: стабилизированное напряжение на нагрузке Uвых, токи нагрузки Iн min, Iн max, номинальное входное напряжение Uвх и его отклонения ΔUвх н и ΔUвх в.
Параметры стабилитрона те же, что и в предыдущем расчете: Uст= Uвых, Iст max, Iст min, rд.
Вычисляем максимальное и минимальное значения рабочего тока стабилитрона:
Iст р max=0,8 Iст max,
Iст р min=1,2 Iст min.
Если стабилизатор должен работать режиме холостого хода (Iн min=0), выбираем Iст р min=Iст min.
Проверяем пригодность выбранного по напряжению стабилизации стабилитрона заданных пределах тока нагрузки и питающего напряжения:
(Iст р max+ Iн min)(1- ΔUвх н)-(Iст min+ Iн max)(1+ ΔUвх в)>0,
где ΔUвх н=(Uвх- Uвх min)/ Uвх, ΔUвх в=(Uвх max-Uвх)/ Uвх.
Номинальное напряжение Uвх, которое должен обеспечить выпрямитель, вычисляем по формуле:
Uвх= Uст[(Iст р max+I н min)- (Iст р min+ I н max)]/[(Iст р max+I н min)(1- ΔUвх н)- (Iст р min+I н max)(1+ΔUвх в)].
Сопротивление балластного резистора:
R= Uвх(ΔUвх в+ΔUвх н)/[(Iст р max+ Iн min)- (Iст р min+ Iн max)].
Также вычисляем мощность резистора с двукратным запасом:
Po=2(Uвх(1+ ΔUвх н)- Uст) 2 /R.
По приведенным в первом варианте расчета формулам находим Kст, КПД и Kф.
↑ Пример расчета №3
Рассчитаем параметрический стабилизатор напряжения со следующими характеристиками: стабилизированное напряжение на нагрузке Uн=9 В; ток Iн min =0, Iн max =10 мА; изменение входного ΔUвх н=10%, ΔUвх в=15%.
Выберем стабилитрон типа Д814Б, для которого Uст= Uн; rд=10 Ом; Iст max=36 мА, Iст min=3 мА.
После занесения исходных данных листе таблицы «Второй вариант расчета» получаем следующие результаты (рис. 4):
Uвх=14 В, R=221 Ом, Po=0,45 Вт, Kст=14,2.
Выбираем резистор сопротивлением 220 Ом мощностью 0,5 Вт.
↑ Анализ работы параметрического стабилизатора [1 – 5]
Исходные данные анализа следующие: Uн, Iн, ΔIн, ΔUвх, R.
Также для анализа необходимы параметры стабилитрона: Uст= Uн, rд, Iст max и Iст min.
Анализ сводится к вычислению рабочего тока стабилитрона Iст р=(Uвх-Uст)/R-Iн; коэффициента передачи Nст= Uвх/Uст; мощности Po балластного резистора, коэффициента стабилизации Kст, КПД и коэффициента фильтрации Kф.
Важной является проверка режима работы стабилитрона в схеме стабилизатора, которая выполняется по формулам, аналогичным приведенным в первом варианте расчета.
↑ Пример анализа №1
Проанализируем номиналы балластных резисторов R3 и R4 компенсационных стабилизаторов напряжения усилителя «Ланзар» [7-9] в зависимости от используемого напряжения питания.
Заявлен диапазон питающих напряжений усилителя от Uп=±30 В до ±65 В, в то время как на принципиальной схеме указаны сопротивления балластных резисторов R=R3=R4=2,2 кОм (1 Вт) [8].
В другой публикации [9] рекомендуется выбирать величину сопротивления балластных резисторов в зависимости от напряжения питания усилителя по формуле R=(Uп-15)/I, где I=8…10 мА. В таблице 1 выполнен расчет по указанной формуле для диапазона питающих напряжений усилителя с шагом в 5 В.
Исходные данные для анализа: стабилизированное напряжение на нагрузке Uн=15 В, ток в нагрузке Iн=(15-0,5)/R5=14,5/6,8=2,13 мА, ΔIн=0,213 мА, изменение входного напряжения ΔUвх=10%.
Выберем стабилитрон 1N4744A, имеющий следующие параметры: Uст= Uн=15 В; rд=14 Ом; Iст max=61 мА; Iст min=5 мА.
Анализ работы параметрических стабилизаторов в усилителе «Ланзар» показал, что минимальный ток стабилизатора Iст р min выбран на пределе с запасом всего 3…14% вместо требуемых 20% (рис. 5).
Используя средство анализа данных электронной таблицы Microsoft Excel «Подбор параметра», уточним сопротивления балластных резисторов. Для этого перейдем в ячейку с формулой для Iст р min (ячейка C26) и в меню выберем Данные -> «Анализ «что-если»->Подбор параметра.
Установим в ячейке C26 значение 6,0 (запас 20% от Iст min), изменяя значение ячейки, в которой занесено сопротивление балластного резистора ($C$15).
Получим R=1,438 кОм. Занесем в эту ячейку ближайшее значение сопротивления из стандартного ряда R=1,3 кОм.
Проведя в таблице указанную операцию для всех значений питающих напряжений, получим следующий результат (рис. 6).
Итоги анализа сведены также в таблицу 2.
Мощность резисторов для напряжений питания усилителя от ±30 В до ±40 В – 0,5 Вт, для остальных напряжений – 1 Вт.
Необходим расчет даже такого простого устройства как параметрический стабилизатор напряжения. Выбор значения сопротивления балластного резистора «на глазок» может вызвать ошибки проектирования, которые не сразу будут замечены.
Перед сборкой понравившейся конструкции целесообразно проанализировать и при необходимости уточнить режим работы стабилитрона параметрического стабилизатора с помощью предлагаемых электронных таблиц в Microsoft Excel.
↑ Файлы
↑ Упомянутые источники
1. Поляков В. Теория: понемногу обо всем // Радио, 2000, №12, с. 45, 46 (8.6. Стабилизаторы напряжения); Радио, 2002, №12, с. 45 (Нелинейные цепи); Радио, 2003, №5, с. 51, 52 (Расчет блоков питания).
2. Будов А. Расчет параметрического стабилизатора напряжения // Радио, 1983, №8, с. 30.
3. Соколов А. Расчет на ПМК параметрического стабилизатора // Радио, 1990, №12, с.60, 61.
4. Параметрические стабилизаторы напряжения. Расчёт простейшего параметрического стабилизатора на стабилитроне .
5. Простые стабилизаторы напряжения и их расчет .
6. Усилитель «Green Lanzar» на N-канальных MOSFET-ах. Симметричный усилитель с квазикомплементарным выходом.
7. Симметричный усилитель мощности «Ланзар» // Радиоконструктор, 2008, №9, с. 10 – 13.
8. Статья на Интерлавке — Усилитель мощности «Ланзар» .
9. Мощный усилитель «Ланзар» .
10. Нефедов А. Микросхемные стабилизаторы напряжения // Радио, 2008, №10, с. 38 – 40 (Регулируемые стабилизаторы); Радио, 2009, №4, с. 41 – 44; №5, с. 41 – 44; №6, с. 41 – 44; №7, с. 42 — 44 (Стабилизаторы с фиксированным выходным напряжением).
Спасибо за внимание!
Камрад, рассмотри датагорские рекомендации
🌼 Полезные и проверенные железяки, можно брать
Опробовано в лаборатории редакции или читателями.
Простой мощный параллельный стабилизатор на транзисторах
В предлагаемой статье описываются принципы работы параллельного стабилизатора, и рассматривается возможность его применения для стабилизации питания мощных высококачественных усилителей НЧ. Приведена также схема полного источника питания с параллельным стабилизатором.
Среди радиолюбителей, а также в промышленных аудиоустройствах высокого качества широко используются параллельные стабилизаторы. В этих устройствах стабилизирующий элемент подключается параллельно нагрузке, что хорошо отражается на таком параметре стабилизатора, как его быстродействие. Фактически быстродействие стабилизатора определяется быстродействием стабилизирующего элемента. Также к достоинствам параллельных стабилизаторов стоит отнести тот факт, что независимо от тока, потребляемого от стабилизатора, ток, потребляемый им самим от источника питания, остается неизменным. Этот факт положительно отражается на уровне излучаемых БП в целом помех (за счет того, что девиации тока потребления не протекают через трансформатор и выпрямительный мост), хотя и служит причиной их низкого КПД.
Рассмотрим вышеизложенное на примере простейшего параллельного стабилизатора – параметрическом стабилизаторе на стабилитроне (рис.1.)
Рис.1. Параметрический стабилизатор
Резистор R0 задает суммарный ток, который будет течь через стабилитрон и подключенную, параллельно ему нагрузку. Легко видеть, что при изменении тока нагрузки, ток через резистор R0 останется постоянным, изменится лишь ток, текущий через стабилитрон D1. Так будет происходить, пока будет выполняться условие (1):
IНR0-Iст.мин. (1)
где IН — ток нагрузки,
IR0 — ток через R0,
Iст.мин. – минимальный ток стабилизации стабилитрона D1
Быстродействие данного стабилизатора будет определяться в основном скоростью изменением величины барьерной емкости стабилитрона [1], а также временем заряда-разряда конденсатора С1.
Однако у подобных стабилизаторов есть и недостатки – в частности для получения более-менее приличного коэффициента стабилизации (>100), через стабилитрон должен течь ток, соизмеримый с током нагрузки. Это обстоятельство, с учетом того, что подавляющее количество стабилитронов рассчитано на ток до 100 мА, затрудняет использование параметрических стабилизаторов в мощных устройствах.
Чтобы обойти это препятствие, параллельно стабилизатору ставят мощный активный элемент, например MOSFET транзистор, как показано на рисунке 2.
Рис.2. Мощный параллельный стабилизатор.
В этой схеме стабилитрон лишь задает стабильное напряжение на затворе транзистора Q1, через цепь сток-исток которого и течет основной ток. Стабилитрон VD3 предохраняет Q1 от пробоя ввиду высоковольтности данной реализации. Подробнее о работе этой схемы можно прочитать в [2].
Схема, приведенная на рисунке один способна работать с большими токами (ограничивается предельными характеристиками примененного мосфета), но выделяет большую мощность и имеет низкий КПД(менее 30% – если падение на резисторе R1 сравнительно велико, ток через мосфет сравним с током через нагрузку, величины входного и выходного напряжений не превышают 100 В), что в мощных приложениях является серьезным недостатком.
Но ток текущий через мосфет, можно заметно снизить без ущерба для коэффициента стабилизации, если устранить источник нестабильности в данной схеме. Остановимся на нем подробнее.
При изменении напряжения на входе стабилизатора изменяется ток, текущий через резистор R1, это изменение можно снизить увеличением номинала этого резистора, но это, в свою очередь потребует увеличение падения напряжения на этом резисторе, а следовательно снизит КПД. Оптимальным решением, на мой взгляд является замена этого резистора на источник тока, на котором падение напряжение можно будет установить равное сумме девиации входного напряжения+2-3 вольта для нормально работы активного элемента источника тока.
С учетом этих дополнений была разработана схема источника питания с параллельным стабилизатором, представленная на рисунке 3.
Рис.3. Принципиальная схема БП с параллельным стабилизатором
Функцию токозадающего резистора здесь выполняет источник тока на транзисторе Q1. Для снижения нестабильности выдаваемого им тока, он запитан от другого источника тока меньшей мощности, который в свою очередь запитан через RCR фильтр для снижения пульсаций. Резистором R7 можно грубо регулировать рабочий ток стабилизатора, резистором R4 плавно. Резистором R8 можно подстроить выходное напряжение стабилизатора в небольших пределах. R6 представляет собой нагрузку БП, потребляющую около 600 мА.(без нагрузки БП не подключать!). Транзисторы Q1 и M1 можно установить на общем радиаторе площадью не менее 500 кв.см.
Основные технические характеристики стабилизатора (с входным и выходным RC-фильтрами):
- Выходное напряжение = 12В.
- Входное напряжение > 18В.
- Ток нагрузки – 600 мА
- Потребляемый ток – 750 мА (при номиналах, указанных на схеме, изменяется подбором резистора R2,R7,R4 – в порядке величины влияния)
- Уровень пульсаций на выходе — -112дБ
- КПД=57%
Легко видеть, что представленная схема обладает достаточно высокими параметрами в части КПД и Кст, сравнимыми с характеристиками компенсационных последовательных стабилизаторов, при этом практически полностью сохраняя достоинства параллельных стабилизаторов.
При этом схема достаточно проста, не требует дефицитных деталей, и может быть сконструирована даже начинающими радиолюбителями.
При входном напряжении до 50В в схеме можно применить – Q1-BD244C, Q2-BC546А, M1-IRF630. В качестве стабилитрона D7 можно применить любой на напряжение 8,2 В, диоды D1-D4 например SF54, диоды D5,D6,D8,D9 – например 1N4148.
Литература:
- Жеребцов И.П. Основы электроники, стр. 40, Л, 1989.
- Рыжков В.А. Простой параллельный стабилизатор на транзисторе.
TECH EXTERNAL
Структурная схема стабилизатора и ее обоснование
Напряжение источников электроэнергии переменного тока, от которых питается ИВЭП, в силу разных причин имеет широкие пределы изменения номинала и в соответствии с ГОСТом 5237-69 это напряжение может отличаться от номинального значения в пределах от 5 до 15%. Кроме того, в процессе работы изменяется и ток, потребляемый аппаратурой. Поэтому ИВЭП содержит в своей структуре стабилизатор напряжения.
Простейшим стабилизатором напряжения является параметрический стабилизатор напряжения. С помощью такого стабилизатора можно получать стабилизированное напряжение от нескольких вольт до нескольких сотен вольт при токах от единиц миллиампер до единиц ампер. Коэффициент стабилизации параметрического стабилизатора напряжения на полупроводниковом стабилитроне может достигать 30-50. Основными достоинствами параметрического стабилизатора являются простота конструкции и надежность работы. К недостаткам следует отнести небольшой КПД, не превышающий 0.3, большое внутреннее сопротивление 5-20 Ом; узкий и нерегулируемый диапазон стабилизируемого напряжения.
Компенсационные стабилизаторы постоянных напряжений и токов являются системами автоматического регулирования, в которых благодаря наличию ООТ обеспечивается постоянство напряжения и тока на нагрузке с высокой степенью точности. Компенсационные стабилизаторы лишены недостатков, свойственных параметрическим стабилизаторам, что достигается усложнением их схем. К достоинствам таких стабилизаторов можно отнести высокий коэффициент стабилизации (больше 1000); низкое внутреннее сопротивление (»10-3¸10-4 Ом); практическая безинерционность; отсутствие собственных помех.
Недостатки: невысокие значения КПД (0.5-0.6); большая сложность, а следовательно, меньшая надежность; значительная масса и габариты.
Стабилизаторы с непрерывным регулированием могут быть выполнены как с последовательным, так и с параллельным включением регулирующего элемента относительно нагрузки. Стабилизаторы последовательного типа рекомендуется применять с источниками первичного питающего напряжения, имеющими малое выходное сопротивление. КПД стабилизатора напряжения параллельного типа зависит от тока нагрузки. У стабилизаторов последовательного типа эта зависимость выражена слабее, т.е. при одинаковой выходной мощности, стабилизатор последовательного типа имеет более высокий КПД. Стабилизаторы напряжения параллельного типа не требуют принятия мер защиты от короткого замыкания на выходе. У стабилизаторов напряжения последовательного типа при коротком замыкании на выходе резко возрастает напряжение на регулирующем транзисторе, и поэтому для сохранения его работоспособности в схему вводят токоограничивающие защитные элементы. Режим холостого хода на выходе опасен для стабилизатора напряжения параллельного типа, т.к. на регулирующем транзисторе рассеивается большая мощность. В качестве стабилизатора напряжения в разрабатываемом ИВЭП я буду использовать компенсационный стабилизатор напряжения последовательного типа. Структурная схема стабилизатора приведена на рисунке 2.1.
Рисунок 2.1 — Структурная схема непрерывного последовательного стабилизатора напряжения
Стабилизатор последовательного типа получает питание от выпрямителя. Стабилизатор состоит из регулирующего элемента РЭ; включенного последовательно с нагрузкой схемы сравнения и усиления постоянного тока. Схема сравнения стабилизатора включает в себя источник опорного напряжения ИОН, измерительный элемент ИЭ и элемент сравнения ЭС. При изменении выходного напряжения на выходе схемы сравнения появляется сигнал разности, который усиливается усилителем постоянного тока УПТ и поступает на вход РЭ. Изменение сигнала на входе регулирующего элемента приводит к изменению на нем напряжения и выходное напряжение изменяется до первоначального с определенной степенью точности. Для питания усилителя используют токостабилизирующий двухполюсник ТСД.
Советуем почитать:
Проект системы радиодоступа в п. Омчак Магаданской области
Традиционные проводные сети составляют основу телекоммуникационной инфраструктуры и еще долго сохранят значимость. Однако их развитие происходит медленно и не всегда успевает за спросом. .
Многопроцессорный вычислительный комплекс
Вычислительная техника в своем развитии по пути повышения быстродействия ЭВМ приблизилась к физическим пределам, которые обусловлены ограниченной скоростью распространения сигналов в лин .
Разработка мероприятий по повышению эффективности деятельности ОАО Московская Городская Телефонная Сеть
Актуальность темы. В настоящее время активно развивается коммерческий сектор телекоммуникационного рынка России, представленный на региональных рынках как мультисервисными, так и с .
Теоретическая часть.
Изучение принципов работы стабилизатора напряжения.
Лабораторная работа №5
Исследование возможных схем последовательного стабилизатора напряжения средствами Multisim 10.
Цель работы:
Провести моделирование и анализ работы схем транзисторного стабилизатора напряжения помощью программы Multisim 10. Определить показатели качества стабилизатора напряжения.
Теоретическая часть.
Требования на электропитание электронных устройств зависит от их конструктивного исполнения и особенностей их эксплуатации. Для стационарных — от электросети с использованием соответствующих конструкций выпрямителей и электронных стабилизаторов напряжений. Для автономных устройств — от сухих элементов, батарей или от аккумуляторов.
Для относительно простых устройств вполне достаточны стабилизаторы. обеспечивающие выходные токи в несколько десятков миллиампер. Для более сложных, например, имеющих в своем составе усилители мощности (для передатчиков — мощные оконечные каскады, для приемников — усилители низкой частоты с выходной мощностью более 0.1Вт) требуются стабилизаторы, рассчитанные на выходные токи 100 и более миллиампер.
Стабилизирующие свойства полупроводникового прибора или схемы характеризуются его дифференциальным сопротивлением, которое выражают как отношение изменения напряжения стабилизации к вызвавшему его малому изменению тока стабилизации, т.е.
Простейший стабилизатор — параметрический, работающий как делитель нестабилизированного напряжения
Рис. 1 Параметрический стабилизатор напряжения
Нестабилизированное напряжение, подаваемое от выпрямителя на вход стабилизатора, должно быть на 40. 50% больше напряжения стабилизации используемого стабилитрона. Нагрузка Rн подключена параллельно стабилитрону, и напряжение на ней соответствует напряжению стабилизации использованного полупроводникового прибора. Благодаря стабилизирующим свойствам ток через стабилитрон изменяется пропорционально току нагрузки, но только в обратном порядке, поэтому общий ток, потребляемый от выпрямителя самим параметрическим стабилизатором и подключенной к нему нагрузкой, остается практически неизменным.
Эффективность работы стабилизатора оценивают коэффициентом стабилизации напряжения Кст — числом, показывающим, во сколько раз уменьшаются пульсации выпрямленного напряжения на выходе устройства по сравнению с такими же характеристиками входного напряжения.
Определить коэффициент стабилизации напряжения простейшего параметрического стабилизатора можно по упрощенной формуле
Параметрический стабилизатор напряжения, можно использовать для питания многих простейших радиотехнических устройств и их узлов, при этом потребляемый ими ток не должен превышать максимальный ток через используемый стабилитрон.
Для питания приемника, усилителя ЗЧ или другого устройства, потребляемый ток которого превышает максимальный ток стабилитрона, в стабилизатор напряжения вводят транзисторный усилитель тока.
Примером может служить компенсационный стабилизатор напряжения.
Рис. 2 Компенсационный стабилизатор напряжения
Напряжение на выходе такого стабилизатора, а значит, и на его нагрузке R_n равно разности напряжений стабилизации стабилитрона D4 и на эмиттером р-п переходе транзистора V2. А так как напряжение на базе транзистора относительно эмиттера (напряжение смещения) составляет доли вольта, то можно считать, что выходное напряжение Uвых равно напряжению Uст используемого стабилитрона.