Параметрический стабилизатор тока схема включения
Параметрический стабилизатор напряжения
В параметрических стабилизаторах напряжения используется прибор с резко нелинейной зависимостью тока от напряжения – стабилитрон. Схема включения стабилитрона выбирается так, чтобы при колебаниях входного напряжения выходное напряжение практически не менялось. Схема параметрического стабилизатора напряжения на газоразрядном стабилитроне приведена на рисунке 1.
Рисунок 1 – Схема параметрического стабилизатора напряжения на газоразрядном стабилитроне
Вольтамперная характеристика газоразрядного стабилитрона (рисунок 2) имеет участок АВ, на котором напряжение остаётся неизменным при изменении тока. Напряжение в пределах, соответствующих рабочему участку АВ характеристики, называется напряжением стабилизации.
Рисунок 2 – Вольтамперная характеристика газоразрядного стабилитрона
Последовательно с параллельно включенным стабилитроном и резистором нагрузки (рисунок 1) включается балластный резистор , по которому протекает ток
. Входное напряжение
, где
.
Схема работает следующим образом. Пусть, например, изменяется входное напряжение . Если входное напряжение увеличивается, то должно увеличиться и напряжение
на нагрузочном резисторе
. Но стабилитрон работает в таком режиме, что незначительное повышение напряжения на нем вызывает резкое возрастание тока стабилитрона
(рисунок 2). При этом увеличивается ток
и падение напряжения на балластном резисторе
. В результате падение напряжения на нагрузке
остается практически неизменным.
Рассмотрим другой возможный случай – изменение тока нагрузки . Увеличение тока
должно вызывать уменьшение напряжения на нагрузке из-за дополнительного падения напряжения на балластном сопротивлении
. Но незначительное уменьшение напряжения на стабилитроне вызывает резкое уменьшение тока в нем. В результате уменьшаются ток в балластном сопротивлении
и падение напряжения на этом сопротивлении, а следовательно напряжение на нагрузке останется практически без изменения.
Газоразрядные стабилитроны широко применяются в аппаратуре на электронных лампах. Однако они не могут быть изготовлены на напряжение ниже 75 в, неработоспособны при токах нагрузки более 50 мА, – имеют относительно низкий коэффициент стабилизации (8 ÷ 20) и недостаточную стабильность во времени. Поэтому помимо стабилизаторов с газоразрядными стабилитронами применяются полупроводниковые стабилизаторы, в которых для стабилизации напряжения используются кремниевые стабилитроны.
В кремниевых стабилитронах рабочий участком вольтамперной характеристики является та часть ее, которая соответствует обратному току – обратному напряжению и расположена примерно параллельно оси тока (рисунок 3).
Рисунок 3 – Вольтамперная характеристика кремниевого стабилитрона
Схема стабилизатора напряжения с кремниевым стабилитроном, аналогичная схеме с газоразрядным стабилитроном, приведена на рисунке 4.
Рисунок 4 – Схема параметрического стабилизатора напряжения на кремниевом стабилитроне
Кремниевые стабилитроны выпускаются для значительно более широких интервалов рабочих напряжения (0,7 ÷ 300 В) и токов (единицы миллиампер – 2 А), имеют высокую стабильность во времени и малые габариты, т.е. особенно удобны для стабилизации напряжения питания транзисторных схем. Коэффициент стабилизации стабилизатора с кремниевым стабилитроном может достигать 100. Единственным недостатком некоторых типов стабилитронов является заметная температурная зависимость напряжения стабилизации, достигающая 0,1% на 1°С.
Параметрические стабилизаторы напряжения для микроконтроллеров
Стабилизатор напряжения является важным звеном в любом источнике питания. От устойчивости и стабильности питающего напряжения во многом зависит надёжность работы и долговечность всего устройства.
Для питания МК обычно применяют стабилизаторы двух видов: параметрические на стабилитронах и компенсационные на интегральных микросхемах. Многочисленные разновидности транзисторных стабилизаторов напряжения, которые публиковались в 1980-х годах, сейчас уже не актуальны. Причина банальная — если нужно максимально дешёвое изделие, то ставят стабилитрон, а если нужен высокий коэффициент стабилизации и защита от перегрузок, то ставят малогабаритную интегральную микросхему.
Несмотря на простоту параметрических стабилизаторов напряжения, именно они хорошо отводят излишний ток, попадающий в цепь питания через входные диоды в стандартных схемах защиты линий портов МК (например, Рис. ЗЛО, б).
Следует учитывать, что низковольтные стабилитроны общего применения имеют «тестированный» ряд напряжений — 3.0; 3.3; 3.6; 3.9; 4.3; 4.7; 5.1; 5.6; 6.2; 7.5; 8.2; 9.1; 12 В при точности ±5 или ±10%. Минимальный ток стабилизации согласно даташитам может составлять 1; 3; 5 мА. Мощность рассеяния стабилитронов бывает 0.5; 1; 3; 5 Вт, что зависит от их габаритных размеров и материала корпуса (металл или пластмасса). У поверхностно монтируемых стабилитронов в SMD-корпусе мощность рассеяния составляет 0.25 и 0.5 Вт.
Параметрические стабилизаторы положительного напряжения выполняются по схемам, приведенным на Рис. 6.5, а. е. Их ядром служат двух- или трёхвыво-дные стабилитроны, иногда дополненные транзисторными усилителями тока.
Рис. 6.5. Схемы параметрических стабилизаторов напряжения (начало):
а) стандартный стабилизатор напряжения с балластным резистором R1 и стабилитроном VDI. Конденсаторы C1. C3 снижают сетевые пульсации и ВЧ-помехи. Диод VD2 уменьшает выходное напряжение до необходимых +4.9. +5 В. Сопротивление резистора R1 должно быть таким, чтобы ток через стабилитрон VD1 находился в пределах ^ctmin-‘-^сгмах ,ю вс^м диа» пазоне входных напряжений, температур и токов нагрузки;
б) светодиод HL1 одновременно является индикатором наличия питания и частью стабилизатора напряжения. По яркости его свечения можно приблизительно судить о токе нагрузки. Важно, чтобы ток через индикатор HL1 всегда был меньше 20 мА, иначе следует увеличить сопротивление резистора R1 или поставить параллельно светодиоду резистивный шунт;
Рис. 6.5. Схемы параметрических стабилизаторов напряжения (окончание):
в) повышение коэффициента стабилизации за счёт генератора тока на полевом транзисторе VT1. Транзистор VT2 увеличивает отдаваемую в нагрузку мощность. Выходное напряжение +5 В меньше напряжения стабилизации VD1 на 0.6. 0.7 В из-за падения напряжения между базой и эмиттером транзистора VT2.
г) базовая схема включения трёхвыводного стабилитрона VDI. Его достоинства — повышенный до 800. 1000 коэффициент стабилизации и широкий диапазон тока нагрузки 1. 100 мА. При полном замыкании резистора R2 выходное напряжение равняется внутреннему опорному напряжению стабилитрона VD1 (2.5 В). Замена VD1 — любой трёхвыводной стабилитрон из серии «431» разных фирм-изготовителей;
д) стабилизатор напряжения с транзисторным усилителем тока. Выходное напряжение определяется по формуле = 1-25-(1 + R2 ,[кОм]/(R2 2[кОм] + /?3[кОм])) + 0.7, где R2, (R2 2) — это сопротивление между верхним и средним (нижним и средним) отводами резистора R2 после регулирования. Число «0.7» означает.напряжение Ub7) транзистора VTI в вольтах. Число «1.25» означает внутреннее опорное напряжение стабилитрона VD1 в вольтах. В качестве замены подойдут любые трёхвыводные стабилитроны из серии «1431». Также можно использовать стабилитроны с опорным напряжением 2.5 В из серии «431», заменив число «1.25» числом «2.5» в расчётной формуле для ишх;
е) мощный «параллельный» стабилизатор напряжения с балластным резистором R1 и шунтирующим транзистором VT1. Выходное напряжение устанавливается резистором R2.
Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.
30. Параметрические стабилизаторы постоянного напряжения: принцип действия, параметры, расчетные соотношения, область применения
Для питания радиоэлектронной аппаратуры, не требующей очень высокой стабильности питающего напряжения постоянного тока или большой выходной мощности, целесообразно применять простые, надежные и дешевые параметрические стабилизаторы напряжения (ПСН). Основой таких устройств является элемент с нелинейной вольт-амперной характеристикой, у которого напряжение на электродах мало зависит от протекающего через элемент тока. Одним из таких элементов является кремниевый стабилитрон.
Параметрический стабилизатор напряжения (тока) называется устройство, у которого стабилизирующие свойства определяются характеристикой нелинейного элемента и отсутствует элемент, измеряющий отклонение выходного напряжения (тока) от заданного значения.
Кремниевые стабилитроны представляют собой особую группу плоскостных диодов, режим работы которых характеризуется обратной ветвью вольт-амперной характеристики в области пробоя (рис. 2-1,а). Рассмотрим основные параметры стабилитрона.
Напряжение стабилизации UCT определяется напряжением на стабилитроне при протекании заданного тока стабилизации Iст. В настоящее время отечественной промышленностью серийно выпускаются приборы с напряжениями стабилизации от 0,7 до 180 В.
Максимально допустимый постоянный ток стабилизации Iст.макс ограничен значением максимально допустимой рассеиваемой мощности Pмакс, зависящей в свою очередь от температуры окружающей среды.
Минимальный ток стабилизации Iст.мин. определяется минимальным значением тока через стабилитрон, при котором еще полностью сохраняется работоспособность прибора. Между значениями Iст.мин и Iст.макс напряжение стабилизации изменяется незначительно.
Статическое сопротивление стабилитрона Rcтат — величина, определяемая отношением напряжения стабилизации к току стабилитрона Iст в данном режиме работы:
Дифференциальное сопротивление стабилитрона rcт — величина, определяемая отношением приращения напряжения стабилизации на приборе ΔUст к вызвавшему его малому приращению тока стабилизации Δiст в заданном диапазоне частот:
На рис. 2-1,б приведена зависимость дифференциального сопротивления rcт маломощных стабилитронов от напряжения стабилизации UCT для различных значений Iст. Из данного рисунка видно, что минимальное значение rcт имеют стабилитроны с напряжением стабилизации около 7—8 В. Далее с увеличением UCT дифференциальное сопротивление растет почти по линейному закону. Отсюда следует вывод, что при стабилизации напряжения постоянного тока, большего 14—16 В, для уменьшения rcт вместо одного высоковольтного стабилитрона целесообразнее установить два или более последовательно включенных низковольтных стабилитронов.
Температурный коэффициент напряжения стабилизации άст определяется относительным изменением напряжения стабилизации ΔUст/Uст, отнесенным к абсолютному изменению температуры окружающей среды ΔTср при постоянном токе стабилизации, Iст, :
Структурные схемы параметрических стабилизаторов напряжения и тока приведены на рис.7.2. Режим стабилизации напряжения или тока осуществляется с помощью только нелинейных элементов НЭ, так как для линейного элемента ЛЭ характерна пропорциональность между входной и выходной величинами и их относительные изменения будут одинаковы. [Электропитание устройств связи О.А. Доморацкий, 178-179с.]
О сновные расчетные формулы можем определить на основе принципиальной схемы параметрического стабилизатора постоянного напряжения на кремниевом стабилитроне, представленной на рис. 2-4.
Коэффициент стабилизации однокаскадного ПСН (см. рис. 2-4) при линейной аппроксимации вольт-амперной характеристики кремниевого стабилитрона (rст = const) равен:
Так как обычно Rн»rст Влияние изменения тока нагрузки Iн на выходное напряжение Uн оценивается выходным сопротивлением ПСН
Из формулы видно, что выходное сопротивление стабилизатора в основном определяется дифференциальным сопротивлением кремниевого стабилитрона rст и не зависит от балластного резистора RБЛ.
Коэффициент полезного действия схемы однокаскадного ПСН
31. Компенсационные стабилизаторы постоянного напряжения с непрерывным регулированием, схемы с последовательным включением регулирующего элемента, область применения, вывод формул показателей качества.
Компенсационный стабилизатор с непрерывным способом регулирования (НСН) представляет собой замкнутую систему автоматического регулирования выходного напряжения при воздействии различных возмущающих факторов (изменение питающего напряжения, нагрузки, температуры окружающей среды и пр.), в которой выходное напряжение поддерживается постоянным за счет изменения падения напряжения на регулирующем элементе.
В качестве регулирующего элемента (РЭ) схемы обычно используются биполярные транзисторы n—p—n и p—n—p типа, работающие в режиме усиления.
В стабилизаторах напряжения происходит непрерывное автоматическое сравнение выходного напряжения (или части его) с опорным напряжением; сигнал ошибки усиливается и используется для управления РЭ (транзистором) так, чтобы уменьшить эту ошибку.
Типичная простая схема компенсационного стабилизатора напряжения постоянного тока с непрерывным способом регулирования последовательного типа приведена на рис. 3-1,а. В состав схемы входят РЭ Т1, усилитель постоянного тока (УПТ) на транзисторе Т2, измерительный элемент – делитель напряжения на резисторах RД1, RПТ и RД2. Источником опорного напряжения является однокаскадный параметрический стабилизатор напряжения на кремниевом стабилитроне Д, минимальное значение рабочего тока через стабилитрон определяется сопротивлением резистора RСТ. Сравнение выходного и опорного напряжения производится на входе транзистора T2 УПТ, он же усиливает сигнал ошибки и управляет РЭ.
При повышении напряжения питания Uп происходит увеличение выходного напряжения UН стабилизаторов и соответственно той его части UН.Д., которая снимается с резисторов R // пт, RД2 делителя напряжения.
Сигнал ошибки Uэб = UН.Д – Uст воздействует на вход транзистора Т2, вызывая увеличение его коллекторного тока IК2. Что приведет к снижению базового тока транзистора Т1, так как он работает в режиме усиления, то падение напряжения на нем возрастает, компенсируя происшедшее увеличение выходного напряжения.Коэффициент стабилизации выходного напряжения при изменении напряжения UП равен:
где rВХ2 – входное сопротивление транзистора Т2 в схеме с ОБ;
– коэффициент деления выходного напряжения;
– вспомогательный коэффициент; – коэффициент передачи тока транзистора Т2.
Выходное сопротивление стабилизатора напряжения последовательного типа определяется выражением
где rВХ1 – входное сопротивление транзистора Т1 в схеме с ОБ; rи.п. – выходное сопротивление источника первичного питания.
Параметрический стабилизатор напряжения
В слаботочных схемах с нагрузками не более 20 мА используется устройство с низким коэффициентом полезного действия, известное как параметрический стабилизатор напряжения. В конструкцию данных приборов входят транзисторы, стабисторы и стабилитроны. Они используются преимущественно в компенсационных стабилизирующих устройствах как опорные источники напряжения.
- Схема параметрического стабилизатора
- Расчет параметрического стабилизатора
- Параметрический стабилизатор напряжения на стабилитроне
- Параметрический стабилизатор на транзисторе
Схема параметрического стабилизатора
В зависимости от технических характеристик, параметрические стабилизаторы могут быть однокаскадными, многокаскадными и мостовыми. Стабилитрон, находящийся в составе конструкции, напоминает обратно включенный диод. Однако пробой напряжения в обратном направлении, характерный для стабилитрона, является основой его нормального функционирования. Данное свойство широко применяется для различных схем, в которых нужно создать ограничение входного сигнала по напряжению.
Параметрические стабилизаторы относятся к быстродействующим устройствам, они защищают чувствительные участки схем от импульсных помех. Использование этих элементов в современных схемах стало показателем их высокого качества, обеспечивающего стабильную работу оборудования в различных режимах. Основой параметрического стабилизатора является схема включения стабилитрона, использующаяся также и в других типах стабилизаторов в качестве источника опорного напряжения.
Стандартная схема состоит из делителя напряжения, который, в свою очередь включает в себя балластный резистор R1 и стабилитрон VD. Параллельно стабилитрону включается сопротивление нагрузки RH. Данная конструкция стабилизирует выходное напряжение при изменяющемся напряжении питания Uп и токе нагрузки Iн.
Работа схемы происходит в следующем порядке. Напряжение, увеличивающееся на входе стабилизатора, вызывает увеличение тока, проходящего через резистор R1 и стабилитрон VD. Напряжение стабилитрона остается неизменным за счет его вольтамперной характеристики. Соответственно, не изменяется и напряжение на сопротивлении нагрузки. В результате, все измененное напряжение будет поступать на резистор R1. Принцип работы схемы дает возможность для расчетов всех необходимых параметров.
Расчет параметрического стабилизатора
Качество работы стабилизатора напряжения оценивается по его коэффициенту стабилизации, определяемого по формуле: КстU= (ΔUвх/Uвх) / (ΔUвых/Uвых). Далее расчет параметрического стабилизатора напряжения на стабилитроне осуществляется в соответствии с сопротивлением балластного резистора Ro и типом используемого стабилитрона.
Для расчета стабилитрона применяются следующие электрические параметры: Iст.макс – максимальный ток стабилитрона на рабочем участке вольтамперной характеристики; Iст.мин – минимальный ток стабилитрона на рабочем участке вольтамперной характеристики; Rд – дифференциальное сопротивление на рабочем участке вольтамперной характеристики. Порядок расчета можно рассмотреть на конкретном примере. Исходные данные будут следующие: Uвых= 9 В; Iн= 10 мА; ΔIн= ± 2 мА; ΔUвх= ± 10%Uвх.
В первую очередь в справочнике выбирается стабилитрон марки Д814Б, параметры которого составляют: Uст= 9 В; Iст.макс= 36 мА; Iст.мин= 3 мА; Rд= 10 Ом. После этого выполняется расчет входного напряжения по формуле: Uвх=nстUвых, в которой nст является коэффициентом передачи стабилизатора. Работа стабилизирующего устройства будет наиболее эффективной когда nст, составляет 1,4-2,0. Если nст = 1,6, то Uвх= 1,6 х 9 = 14,4В.
На следующем этапе выполняется расчет сопротивления балластного резистора (Ro). Для этого применяется следующая формула: Rо= (Uвх–Uвых) / (Iст+Iн). Значение тока Iст выбирается по принципу: Iст ≥ Iн. В случае одновременного изменения Uвх на величину ΔUвх и Iн на величину ΔIн, не должно быть превышения током стабилитрона значений Iст.макс и Iст.мин. В связи с этим, Iст берется как среднее допустимое значение в данном диапазоне и составляет 0,015А.
Таким образом, сопротивление балластного резистора будет равно: Rо= (14,4 – 9) / (0,015 + 0,01 ) = 216 Ом. Ближайшее стандартное сопротивление составит 220 Ом. Для того чтобы выбрать нужный тип резистора, нужно выполнить расчет мощности, рассеиваемой на его корпусе. Используя формулу Р = I2Rо, получаем значение Р = (25· 10-3)2х 220 = 0,138 Вт. То есть стандартная мощность рассеивания резистора будет 0,25Вт. Поэтому для схемы лучше всего подойдет резистор МЛТ-0,25-220 Ом ± 10 %.
После выполнения всех расчетов нужно проверить, правильно ли выбран режим работы стабилитрона в общей схеме параметрического стабилизатора. Вначале определяется его минимальный ток: Iст.мин= (Uвх–ΔUвх–Uвых) /Rо – (Iн+ΔIн), с реальными параметрами получается значение Iст.мин= (14,4 – 1,44 – 9) х 103/ 220 – (10 + 2) = 6 мА. Такие же действия выполняются для определения максимального тока: Iст.макс= (Uвх+ΔUвх–Uвых) /Rо – (Iн–ΔIн). В соответствии с исходными данными, максимальный ток составит: Iст.макс= (14,4 + 1,44 – 9) · 103/ 220 – (10 – 2) = 23 мА. Если полученные значения минимального и максимального тока выходят за допустимые пределы, то в этом случае нужно изменить Iст или сопротивление резистора Rо. В некоторых случаях требуется замена стабилитрона.
Параметрический стабилизатор напряжения на стабилитроне
Для любой радиоэлектронной схемы обязательно наличие источника питания. Они могут быть постоянного и переменного тока, стабилизированными и нестабилизированными, импульсными и линейными, резонансными и квазирезонансными. Такое разнообразие дает возможность выбора источников питания для разных схем.
В наиболее простых электронных схемах, где не требуется высокая стабильность питающего напряжения или большая выходная мощность, чаще всего применяются линейные источники напряжения, отличающиеся надежностью, простотой и низкой стоимостью. Их составной частью служат параметрические стабилизаторы напряжения и тока в конструкцию которых входит элемент, имеющий нелинейную вольтамперную характеристику. Типичным представителем таких элементов является стабилитрон.
Данный элемент относится к особой группе диодов, работающих в режиме обратной ветви вольтамперной характеристики в области пробоя. При включении диода в прямом направлении от анода к катоду (от плюса к минусу) с напряжением Uпор, через него начинает свободно проходить электрический ток. Если же включено обратное направление от минуса к плюсу, то через диод проходит лишь ток Iобр, составляющий всего несколько мкА. Увеличение на диоде обратного напряжения до определенного уровня приведет к его электрическому пробою. При достаточной величине силы тока диод выходит из строя под действием теплового пробоя. Работа диода в области пробоя возможна в случае ограничения тока, проходящего через диод. В различных диодах напряжение пробоя может составлять от 50 до 200В.
В отличие от диодов, вольтамперная характеристика стабилитрона имеет более высокую линейность, в условиях постоянного напряжения пробоя. Таким образом, для стабилизации напряжения с помощью этого устройства обратная ветвь вольтамперной характеристики. На участке прямой ветви работа стабилитрона происходит точно так же, как и у обычного диода.
В соответствии со своей вольтамперной характеристикой, стабилитрон обладает следующими параметрами:
- Напряжение стабилизации – Uст. Зависит от напряжения на стабилитроне во время протекания тока Iст. Диапазон стабилизации у современных стабилитронов находится в пределах от 0,7 до 200 вольт.
- Максимально допустимый постоянный ток стабилизации – Iст.max. Ограничивается величиной максимально допустимой рассеиваемой мощности Рmax, которая, в свою очередь тесно связана с температурой окружающей среды.
- Минимальный ток стабилизации – Iст.min. Зависит от минимального значения тока, проходящего через стабилитрон. При этом токе должно быть полное сохранение работоспособности устройства. Вольтамперная характеристика стабилитрона между параметрами Iст.max и Iст.min имеет наиболее линейную конфигурацию, а изменение напряжения стабилизации очень незначительно.
- Дифференциальное сопротивление стабилитрона – rст. Данная величина определяется как отношение приращения напряжения стабилизации на устройстве к малому приращению тока стабилизации, вызвавшему это напряжение (ΔUCT/ ΔiCT).
Параметрический стабилизатор на транзисторе
Работа параметрического стабилизатора на транзисторах почти ничем не отличается от аналогичного устройства на стабилитроне. В каждой схеме напряжение на выходах остается стабильным, поскольку их вольтамперные характеристики затрагивают участки с падением напряжения, слабо зависящим от тока. То есть, как и в других параметрических стабилизаторах, стабильные показатели тока и напряжения достигаются за счет внутренних свойств компонентов.
Падение напряжения на нагрузке будет таким же, как и разность падения напряжения стабилитрона и р-п перехода транзистора. Падение напряжения в обоих случаях слабо зависит от тока, отсюда можно сделать вывод, что выходное напряжение также является постоянным.
Нормальная работа стабилизатора характеризуется наличием напряжения в диапазоне от Uст.max до Uст.min. Для этого необходимо, чтобы и ток, проходящий через стабилитрон, находился в пределах от Iст.max до Iст.min. Таким образом, течение максимального тока через стабилитрон будет осуществляться в условиях минимального тока базы транзистора и максимального входного напряжения. Поэтому транзисторный стабилизатор имеет существенные преимущества над обычным устройством, поскольку значение выходного тока может изменяться в широком диапазоне.
Схема стабилизатора напряжения
Что такое стабилизаторы сетевого напряжения
Стабилизатор напряжения для загородного дома
Схема подключения стабилизатора напряжения
Схема подключения стабилизатора напряжения в частном доме