Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подключение счетчика через конденсатор

Как подключить конденсатор к электродвигателю

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Почти ко всем частным домам, гаражам и территориям подведена однофазная сеть 220В. От нее работают очень многие бытовые устройства. Если подключить трехфазный агрегат к бытовой сети с напряжением 220В, просто соединив обмотки статора с питающей сетью, то ротор не будет двигаться, так как нет вращающегося магнитного поля. Здесь нужен пусковой и рабочий конденсатор. Первый включается на непродолжительное время. Он позволяет увеличить пусковой момент. Из-за того, что напряжение во время заряда конденсатора возрастает постепенно, разность потенциалов на его выводах будет неизменно отставать от питающей сети, благодаря чему и произойдет сдвиг фаз и возникнет вращающееся магнитное поле. Но как подключить конденсатор к электродвигателю?

Как подключить конденсатор к электродвигателю 220В?

Сперва открутите крышку клеммной коробки (расположена на корпусе агрегата). Здесь можно увидеть количество выходящих из статора контактов, на которые выведены концы обмоток статора — 6. Если соединение выполнено только по схеме «Звезда» в коробке клеммной будет лишь 3 контакта. Переключение схемы соединения обмоток статора со «Звезды» на «Треугольник» осуществляется с помощью перестановки перемычек, которые замыкают концы обмоток. Пример представлен на фото:

Как подключить пусковой конденсатор к электродвигателю по схеме «Треугольник» и «Звезда». Рассмотрим эти два способа подробно.

«Треугольник»

  1. При помощи перемычки соедините конец фазной обмотки U2 с началом фазной обмотки V1.
  2. При помощи перемычки соедините конец фазной обмотки V2 с началом фазной обмотки W1.
  3. При помощи перемычки соедините конец фазной обмотки W2 с началом фазной обмотки U1.

Все точки соединения, о которых сказано выше, являются точками подключения к трехфазной сети. Подключение конденсаторов к электромотору с обмотками статора соединенных по схеме «Треугольник» выполняется через специальную пусковую кнопку, а включение агрегата в сеть производится согласно приведенной схеме.

Когда у электромотора обмотки соединены только по схеме «Звезда», то в клеммную коробку уже выведены 3 клеммы. Подключение конденсаторов выполняется по приведенной схеме. К концам обмоток U, V и W (или U1, V1 и W1 — как на схеме), нужно через пусковую кнопку подключить конденсаторы и жилы кабеля (подвести питающее напряжение), что и позволит запустить агрегат от однофазной сети.

При подключении в однофазную сеть электромотора, у которого обмотки статора соединены по схеме «Треугольник», потеря мощности составит не менее 25%. При подключении в однофазную сеть трехфазного двигателя со схемой соединения обмоток «Звезда» потеря мощности составит не менее 50%. Можно разобрать агрегат, рассоединить центральное соединение обмоток и вывести недостающие концы обмоток в клеммную коробку. Далее следует соединить концы обмоток по схеме «Треугольник» и вести подключение по ранее описанному принципу.

Если агрегат имеет мощность до 1,5 кВт, то чаще всего установки рабочих конденсаторов оказывается достаточно, так как конденсаторов, соединенных параллельно может быть несколько. Если же предполагаются значительные нагрузки на электродвигатель, то к нему стоит подключить рабочий и пусковой конденсаторы.

Чтобы подобрать емкость для конденсатора примените следующую формулу:

Сраб. = k х Iф/U сети

k – коэффициент равный 4800 для схемы соединения обмоток статора «Треугольник» и 2800 — для схемы «Звезда».

Iф – номинальное значение тока статора (определяется по справочным данным, исходя из маркировки двигателя или замера присоединительных и габаритных размеров).

U сети – напряжение питания сети (220В).

Теперь вы знаете, как подключить конденсатор к электродвигателю 220в. Примите во внимание все, что написано выше и смело действуйте.

Подключение счетчика через конденсатор

Сие устройство явилось результатом работы дружного коллектива. Проект коммерческий, поэтому прошивку, схему и печатные платы не выкладываю.

Все началось с рекламы китайского «чудо устройства», которое позволяет экономить до 30% электроэнергии. Нам стало интересно, как это работает, и в один из дней на столе появилось это чудо инженерной мысли.

После разборки прибора все стало предельно понятно. В основе работы прибора лежит принцип компенсации реактивной мощности создаваемой индуктивной нагрузкой в сети.

Принцип работы подобных приборов прост и известен каждому электрику.

Потребляемая нагрузкой мощность в цепи переменного тока выражается формулой:

P=U*I*cosф , где U и I – действующие значения напряжения и тока, φ – угол сдвига фаз между ними.

При включении в сеть переменного тока приборов с чисто активной нагрузкой (лампы накаливания, обогреватели, утюги и т.д.) в цепи протекает ток, фаза которого совпадает с фазой напряжения (рисунок 1). При этом угол сдвига фаз = 0, и соответственно cosφ = 1.

Читайте так же:
Brother dcp l2500dr сброс счетчика фотобарабана

Рисунок 1. Мощность в цепи переменного тока при включении активной нагрузки (U – напряжение, Iа – ток активной нагрузки, P – потребляемая мощность).

При включении в электрическую сеть, нагрузки с индуктивным сопротивлением (электродвигатели, трансформаторы электромагниты и т.д.) появляется фазовый сдвиг между током и напряжением, при этом ток отстает от напряжения на некоторый фазовый угол, и суммарная потребляемая мощность возрастает (рисунок 2). В сети, кроме совершающей полезную работу активной мощности протекает реактивная мощность, направленная только на создание магнитных полей в катушках и не совершающая полезной работы. Активная и реактивная мощности составляют полную мощность, при этом доля активной мощности по отношению к полной определяется косинусом угла сдвига фаз между током и напряжением – cosφ.

Рисунок 2. Мощность в цепи переменного тока при включении индуктивной нагрузки (U – напряжение, I L – ток индуктивной нагрузки, P – потребляемая мощность).

Уменьшить потери («скомпенсировать» индуктивную реактивную мощность), возможно подключив в электросеть переменного тока другие фазосдвигающие элементы – конденсаторы. Конденсатор сдвигает фазу тока в обратном направлении, то есть в цепи переменного тока с емкостной нагрузкой ток опережает напряжение (рисунок 3).

Рисунок 3. Мощность в цепи переменного тока при включенной емкостной нагрузке ( U – напряжение, IC – ток при подключенной емкостной нагрузке, P – потребляемая мощность).

Для полной компенсации реактивной составляющей необходимо, чтобы соблюдалось условие XL = XC , то есть индуктивное сопротивление катушки должно равняться емкостному сопротивлению конденсатора (рисунок 4).

Рисунок 4. Мощность в цепи переменного тока при включенной индуктивной и емкостной нагрузке ( U – напряжение, IL – ток при подключенной индуктивной нагрузке, IC – ток при подключенной емкостной нагрузке, Iрез – результирующий ток нагрузки, P – потребляемая мощность).

На промышленных предприятиях для компенсации реактивной составляющей применяют мощные компенсирующие конденсаторные установки .

С физикой работы вроде разобрались, теперь давайте посмотрим на реальное устройство. Разобрав «китайское чудо» внутри находим следующую схему:

· предохранитель F 1 – 0,3 грн.;

· конденсатор С1 – 10 грн.;

· резисторы R 1, R 2- R 4 – 4 x 0,04 грн.;

· варистор R 2 – 0,55 гнр.;

следующий узел вообще не имеет смысла и нужен только для того, чтобы при включении горели светодиодики;

· конденсатор С2 – 0,45 грн.;

· диодный мост – 4х0,15 грн.;

· конденсатор С3 – 0,3 грн.;

· светодиоды LED 1, LED 2 – 2х0,2 грн. (для чего их два – непонятно…);

· корпус — 10 грн.;

ИТОГО: 22,76 грн.

Смотрим стоимость китайского устройства в интернет магазинах тут или тут…

Для тех, кто хочет экономить данным образом, предлагаю сходить на рынок и купить обычный бумажный конденсатор МБМ, емкостью 4-6 мкФ, рассчитанный на напряжение не ниже 600В. Обойдется он Вам в 5 — 10грн

Возвращаясь к физике процесса, повторюсь, что реальная экономия будет только при условии, когда XL = XC .

НО! Допустим, что у пылесоса XL = 600 Ом, а cosφ = 0,92, у холодильника XL = 500 Ом, а cosφ = 0,90, у кондиционера производства СССР XL = 270 Ом, а cosφ = 0,87. То есть, получается, что для различных потребителей нужно подключать различные конденсаторы.

Допустим, что при включении холодильника, при подключенном конденсаторе возникает ситуация, когда XL = XC и достигается максимальная экономия. Тогда при включении кондиционера XL > XC и емкости конденсатора не будет хватать для полной компенсации реактивной составляющей. При включении пылесоса XL XC и емкость конденсатора будет избыточной. То есть нагрузка будет иметь емкостной характер, и в цепи будет протекать реактивная мощность вызванная «компенсирующим» конденсатором.

Посчитаем время работы электроприборов:

· кондиционер – 10 минут, через 10 минут; за час 30 минут, за сутки – 12 часов;

· холодильник – 5 минут, через 15; за час 15 минут; за сутки – 6 часов;

· пылесос – 2 раза в неделю по 15 минут;

Все остальное время электроприборы выключены, но «китайское чудо» продолжает работать и продолжает создавать в сети реактивную мощность с емкостной составляющей.

Получается, что данный прибор не экономит, а наоборот потребляет дополнительную электроэнергию.

Ну и еще один немаловажный момент, о котором молчат «продаватели» данного девайса.

ВНИМАНИЕ! При работе устройства со старым электромеханическим счетчиком экономия электроэнергии = 0! Эти счетчики не учитывают реактивную составляющую…

Реактивную составляющую мощности учиты­вают только электронные счетчики, например типов Меркурий 230, ПСЧ-3АР , ПСЧ-3ТМ , ПСЧ-4ТМ , СЕ302, СЕ304, СЭБ-1TM, СЭТ3, СЭТ-4TM , ЦЭ6811, ЦЭ6812, ЦЭ6850М, и т.д.

ХВАЛИМ «СВОЕ БОЛОТО».

Решив разработать действительно работающее устройство, мы ставили перед собой следующие задачи:

· разработать устройство для бытовых целей (квартиры, магазины, кафе, автозаправки);

Читайте так же:
Счетчик стэ 561 описание

· разработать устройство динамической компенсации реактивной мощности;

· разработать устройство с высокой надежностью;

· разработать устройство с большой нагрузочной способностью;

· разработать устройство с минимальными размерами корпуса.

В основе работы устройства лежит тот же принцип компенсации реактивной мощности созданной индуктивной нагрузкой с помощью подключения параллельно нагрузке конденсаторов. Собрано устройство на микроконтроллере AVR . Поскольку для компенсации реактивной мощности требуется измерить cosφ , устройство подключается в разрыв цепи, сразу после счетчика или в разрыв ветви цепи (при большом количестве потребителей или большой потребляемой мощности).

Блок схема устройства показана на рисунке 5.

Рисунок 5. Блок-схема динамического компенсатора мощности.

Микроконтроллер получает данные датчиков тока ( DI ) и напряжения ( DU ), и вычисляет реальный cosφ . В зависимости от вычисленного значения микроконтроллер ( MCU ) через ключи (К1-К n ) подключает конденсатор (С1-С n ) определенной емкости параллельно нагрузке. Уровень скомпенсированной реактивной мощности выводится на линейку светодиодов ( LED ).

При чисто активной нагрузке (лампы накаливания, нагревательные элементы) и при отсутствии нагрузки (выключены все потребители) и при появлении реактивной мощности вызванной емкостной составляющей в нагрузке (импульсные блоки питания ПК и электронной аппаратуры), устройство либо снижает емкость конденсатора подключенных параллельно нагрузке, либо полностью их отключает. Таким образом достигается максимальная динамическая компенсация реактивной мощности, вызванной использованием приборов и индуктивной нагрузкой.

Электрическая схема прибора защищена плавким предохранителем. В случае выхода прибора из строя, вся проводка останется подключенной к электросети. Корпус прибора выполнен из негорючего ABS пластика. В качестве датчика тока применен не интегральный цифровой датчик, а трансформатор тока. «Проходной» провод выполнен из медного одножильного кабеля сечением 6мм 2 . Для защиты электросети и самого прибора от резких бросков напряжения применен мощный варистор.

Устройство выполнено в корпусе размерами 106х90х55мм и предназначено для установки на DIN -рейку.

ВНИМАНИЕ! Повторюсь еще раз для тех, кто читал невнимательно.

Устройство не экономит электроэнергию при работе обычных ламп накаливания, утюгов, ТЭНов, анодных котлов или бойлеров. Если у Вас установлен электромеханический счетчик старого образца, прибор не даст реальной экономии.

Конденсаторы для запуска электродвигателя: какие нужны, как подключить

  • 22 Января, 2021
  • Инструменты и оборудование
  • Юлия Толок

В быту часто возникает такая ситуация, когда необходимо подключить электродвигатель, но нет нужного источника питания. Тогда требуется использование другого типа напряжения. Обычно это происходит, если двигатель нужно подсоединить к стороннему оборудованию (токарному станку, самодельному устройству). Для этой цели применяют конденсаторы. Они бывают нескольких видов, поэтому необходимо иметь хотя бы базовое понятие о том, какие конденсаторы для запуска электродвигателя использовать в каждом конкретном случае.

Что собой представляет конденсатор

Конденсатор — это радиоэлемент, состоящий из двух пластин, между которыми расположен диэлектрик. Его основная цель — создать буфер между пластинами для накопления заряда. Конденсаторы бывают трех видов:

  1. Полярные. Используются в системах постоянного тока. Это электролитические конденсаторы, которые вследствие своего особого строения имеют полярность. Для подключения к источникам переменного тока не очень подходят из-за разрушения слоя диэлектрика с выделением большого количества тепла, что иногда даже приводит к взрывам.
  2. Неполярные. Предназначены для использования в обоих типах цепей.
  3. Электролитические. К этой категории относятся только неполярные конденсаторы такого типа. У них в роли обкладки выступает оксидная пленка. Оптимальный вариант для низкочастотных двигателей благодаря высокой возможной емкости.

Каждый тип двигателей имеет свои особенности подбора конденсатора. Это определяет и какой емкости нужен конденсатор для запуска двигателя, какого номинального напряжения и какого типа.

Подключение однофазного двигателя

Для подключения асинхронного двигателя в однофазную цепь обычно используется напряжение 220 В. Но для запуска необходимо создать вращательный момент смещения ротора. С этой целью применяется пусковая обмотка, которая является дополнительной и функционирует только при запуске. На ней при помощи конденсатора задается смещение фазы.

Емкость выбирается по следующему принципу. Общая емкость (рабочая и пусковая) на 100 Вт мощности составляет приблизительно 1 мкФ. Если необходимо подобрать конденсаторы для запуска электродвигателя мощностью 1,5 кВт, то ее достаточно легко рассчитать: 1,5 х 1000 : 100 х 1 = 15 мкФ. Таким образом, чтобы подключить однофазный асинхронный двигатель мощностью 1,5 кВт, необходимо использовать рабочий и пусковой конденсатор общей емкостью 15 мкФ.

Подобные двигатели имеют несколько режимов работы:

  • Подключаемая дополнительная обмотка к пусковому конденсатору. Емкость подбирается из соображений 70 мкФ на киловатт мощности.
  • Дополнительная обмотка, задействована на всем периоде работы совместно с рабочим конденсатором, емкость около 30 мкФ.
  • Подключение двух типов конденсаторов одновременно.

Трехфазный двигатель

При подключении трехфазного двигателя используется рабочий конденсатор.

Читайте так же:
Цифровой счетчик это переменная с ограниченным диапазоном

Чтобы правильно подобрать конденсатор для трехфазного электродвигателя, в первую очередь следует рассчитать его минимальную емкость.

Методы расчета емкости

Для расчета того, какие конденсаторы для запуска электродвигателя лучше использовать, применяется следующая формула:

  • С = k х If : Uc,
  • k – коэффициент, он отличается в зависимости от типа подключения, 4800 — треугольник и 2800 — звезда;
  • If – ток стартера (указывается на двигателе);
  • Uc – напряжение сети, в данном случае 220 вольт.

На выходе получается емкость, измеряемая в мкФ (одна миллионная часть Фарада). Рассчитать ее можно и другим способом, используя в качестве основного параметра мощность.

Каждые 100 Вт мощности двигателя соответствуют 7 мкФ. Следует не забывать о том, что на обмотку стартера должен поступать ток не выше, чем номинальный.

Пример расчета емкости

Таким образом, чтобы понять, какие конденсаторы для запуска электродвигателя 2,2 кВт оптимальны, нужно произвести расчет: 2,2 х 1000 : 100 х 7 = 154 мкФ. Можно подобрать похожий по емкости (150 мкФ) или использовать несколько.

Если мощность двигателя будет, скажем, 1 кВт, то расчет будет выглядеть следующим образом: 1 х 1000 : 100 х 7 = 70 мкФ.

Подключение двух конденсаторов для трехфазного двигателя

Для запуска двигателя в нагруженном состоянии требуется добавление пускового конденсатора. Он осуществляет работу в первые несколько секунд во время пуска и прекращает работать при выходе ротора на рабочий режим (частоту оборотов). Чтобы подобрать конденсатор для двигателя в этом случае, следует знать, что его расчетное напряжение превышает таковое у рабочего конденсатора в 1,5 раза, емкость — в 2,5-3 раза.

Допускается подключение более одного конденсатора. Если подключать их параллельно, то емкость будет увеличиваться, что удобно для расчетов.

После включения двигателя первые разы необходимо обязательно проследить за его работой. Он не должен слишком нагреваться. Если непонятно, какие конденсаторы для электродвигателя использовать в этом случае, то верный ответ — с меньшей емкостью. Рабочее напряжение составляет не менее 450 В. Чтобы двигатель работал эффективно, необходимо не только правильно определить все параметры используемого конденсатора, но и учесть условия его нагрузки или работы.

Отличия пускового и рабочего конденсатора

Пусковой конденсатор нужен для запуска двигателя, поэтому работает короткое время в начале, после чего отключается, тогда как мотор продолжает работать (в обмотке создается сдвиг фаз). Следовательно, время, когда пусковой конденсатор задействован, составляет около 3 секунд, так как за более продолжительный период он может сильно нагреться и привести к замыканию в цепи двигателя, за чем непременно последует выход из строя элементов схемы.

Такой вид конденсатора используется на электродвигателях, схема подключения которых предусматривает этот режим запуска. Для остальных двигателей он тоже может использоваться, если в момент запуска на валу создается повышенная нагрузка, которая не дает ротору свободно вращаться.

Рабочий конденсатор задает сдвиг фаз для постоянной работы двигателя, поэтому рассчитывается с учетом более продолжительной работы. Во время смены фаз цикла на конденсаторе появляется напряжение, превышающее напряжение питания. Это происходит из-за того, что им совместно с обмоткой создается колебательный контур. Последнее также важно учитывать.

Сравнение конденсаторов обоих типов

Рабочий и пусковой конденсаторы имеют такие отличия:

  • Использование в различных цепях подключения: рабочей и пусковой.
  • Рабочим конденсатором генерируется электромагнитное поле для основного цикла работы двигателя, пусковым задается сдвиг фаз между двумя обмотками — рабочей и дополнительной — в начале работы.
  • Первый подключается последовательно вспомогательной обмотке, второй — параллельно основной.
  • Рабочий конденсатор задействован все время, пока двигатель включен, пусковой только на старте до момента его выхода на постоянный режим.
  • Как уже было отмечено, принцип подбора емкости также отличается. Каждые 100 Вт соответствуют 7 мкФ для рабочего конденсатора и 13-17 мкФ для пускового. Отличается и коэффициент повышения предельно допустимого напряжения по сравнению с номинальным: для рабочего — 1,15, пускового — 2-2,5.

Эти правила помогают хотя бы приблизительно понять, какой конденсатор нужен для запуска электродвигателя.

Принципы подключения

С точки зрения безопасности рекомендуется соблюдать такие правила:

  • Каждый раз после выключения двигателя разряжать конденсатор. Накопленный им заряд может привести к выходу из строя схемы. В некоторых конденсаторах может быть встроен разрядный резистор, который подбирается с учетом того, чтобы полностью его разрядить через 50 секунд после отключения питания.
  • Токоведущие части необходимо изолировать, чтобы не прикоснуться к ним случайно.
  • Корпус конденсатора должен быть надежно закреплен, чтобы не сместился в процессе работы.

Если есть сомнения в способности подобрать правильно конденсаторы для запуска электродвигателя и самостоятельно подключить устройство, то рекомендуется обращаться за помощью к специалисту.

Читайте так же:
Как установит счетчик посещения блога

Иногда может возникнуть вопрос, какой конденсатор нужен для двигателя постоянного тока. Дело в том, что подобные двигатели не нуждаются в емкостных элементах в цепи. Но конденсаторы там также могут использоваться, их ставят на щеточный механизм для устранения помех. Они имеют совершенно другой принцип работы.

Проверка работоспособности конденсаторов

Для проверки конденсаторов применяют измеритель емкости. Он может быть выполнен как в виде отдельного прибора, так и быть в составе мультиметра (тестера). Проще рассмотреть вариант проверки с мультиметром:

  • в первую очередь необходимо обесточить конденсатор;
  • далее разрядить его, закоротив выводы;
  • снять одну из клемм;
  • переключить мультиметр в режим измерения емкости конденсаторов;
  • присоединить щупы к выводам конденсатора;
  • считать с экрана показатель емкости.

Режим измерения емкости на мультиметре может изображаться по-разному. В большинстве имеются специальные гнезда Fcx.

Перед началом проверки конденсатора рекомендуется вручную (или автоматически, в зависимости от модели) переключить предел измеряемой емкости. Как правило, максимальное значение составляет 100 мкФ, чего в большинстве случаев достаточно. Существуют и другие приборы, позволяющие измерять емкость. Они выполняются в виде щупов, пинцетов или оснащаются специальными разъемами.

Важно понимать, что номинал, указанный на корпусе конденсатора, должен соответствовать измеряемому значению. Если это не так, то его следует заменить.

Замена и подбор конденсатора

Если есть конденсатор, аналогичный сгоревшему, то его достаточно просто установить на место старого. Полярность здесь роли не играет.

Многие не знают, какие конденсаторы для запуска электродвигателя использовать нельзя. Конденсаторы с указанием полярности (электролитические) использовать запрещается. Они термически разрушаются при применении в таких схемах. Как правило, для этой цели существуют специальные, которые предназначены для работы с переменным током и не имеют полярности, а также обладают специальным креплением и клеммами для быстрого монтажа.

Если нужного номинала нет, то проще всего подключить несколько конденсаторов. Делать это необходимо параллельно, так как при таком типе соединения емкость будет суммарной. При этом максимальное напряжение, на работу с которым они рассчитаны, не увеличивается. Такая схема подключения полностью соответствует монтажу конденсатора большей емкости.

Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

Многие любители и профессионалы применяют в работе электрооборудование различного предназначения. И во многих случаях электрооборудование приводится в движение трехфазными двигателями. Но трехфазная сеть зачастую недоступна в гаражных боксах и индивидуальных домовладениях. И тогда на помощь приходят схемы подключения трехфазного двигателя в однофазную сеть.

Для чего нужен конденсатор

Наиболее распространены и применяются в станках трехфазные асинхронные двигатели переменного тока с короткозамкнутым ротором. Их подключение к однофазной сети мы и будем рассматривать. При включении двигателя в трехфазную сеть по трем обмоткам, в разный момент времени протекает переменный ток. Этот ток создает вращающееся магнитное поле, которое начинает вращать ротор двигателя.

При подключении двигателя к однофазной сети, ток по обмоткам течет, но вращающегося магнитного поля нет, ротор не крутится. Выход из этой ситуации был найден. Самым простым и действенным способом оказалось параллельное подключение конденсатора к одной из обмоток двигателя. Конденсатор, импульсно получая и отдавая энергию создает смещение фазы, в обмотках двигателя получается вращающееся магнитное поле и он работает. Емкость постоянно находится под напряжением и называется рабочим конденсатором.

ВАЖНО! Правильно рассчитать и подобрать емкость рабочего конденсатора и его тип.

Как правильно подобрать конденсаторы

Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент. Для разного типа соединений обмоток коэффициент составляет:

  • звездой – 2800;
  • треугольником — 4800.

Недостатком этого метода является то, что не всегда на электродвигателе сохранилась табличка с данными. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока. К тому же на силу тока могут действовать такие факторы как отклонения напряжения в сети и величина нагрузки на двигатель.

Мощность электродвигателя, кВт0,40,60,81,11,52,2
Ёмкость конденсатора C2 в номинальном режиме, мкФ406080100150230
Ёмкость конденсатора C2 в недогруженном режиме, мкФ25406080130200
Ёмкость пускового конденсатора C1 в номинальном режиме, мкФ80120160200250300
Ёмкость конденсатора C1 в недогруженном режиме, мкФ2035456080100

Поэтому следует применять упрощенный расчет емкости рабочих конденсаторов. Просто учесть, что на каждые 100 ватт мощности необходимо 7 микрофарад емкости. Удобнее использовать несколько параллельно соединенных конденсаторов малой, желательно одинаковой емкости, чем один большой. Просто суммируя емкость собранных конденсаторов, можно легко определить и подобрать оптимальное значение. Для начала лучше процентов на десять занизить суммарную емкость.

Читайте так же:
Надо ли менять счетчик через 4 года

Если двигатель легко запускается и мощности его достаточно для работы, то все подобрано правильно. Если нет – нужно еще подсоединять конденсаторы, пока двигатель не достигнет оптимальной мощности.

СПРАВКА. При подключении трехфазного асинхронного двигателя с короткозамкнутым ротором в однофазную сеть теряется не менее трети его мощности.

Следует помнить, что много не всегда хорошо, и при превышении оптимальной емкости рабочих конденсаторов двигатель будет перегреваться. Перегрев может привести к сгоранию обмоток и выходу электродвигателя из строя.

ВАЖНО! Конденсаторы следует соединять между собой параллельно.

Желательно выбирать конденсаторы с рабочим напряжением не менее 450 вольт. Самыми распространенными являются так называемые бумажные конденсаторы, с буквой Б в наименовании. В настоящее время выпускаются и специализированные, так называемые моторные конденсаторы, например К78-98.

ВНИМАНИЕ! Желательно выбирать конденсаторы для переменного тока. Использование иных тоже возможно, но связано с усложнением схемы и возможными нежелательными последствиями.

В случае, если запуск двигателя осуществляется под нагрузкой и происходит тяжело, необходим еще и пусковой конденсатор. Он включается параллельно рабочему на непродолжительное время пуска электродвигателя. Его емкость должна быть равной или не более чем в два раза превышать емкость рабочего.

Схема подключения электродвигателя 380 на 220 вольт с конденсатором

Подключить трехфазный двигатель в однофазную сеть несложно и с этим справится даже электромонтер-любитель. Если возникают затруднения, следует обратиться к друзьям или знакомым. Рядом всегда найдется грамотный электрик.

Обмотки трехфазных двигателей с рабочим напряжением 380 на 220 для работы в сети на триста восемьдесят вольт соединены по схеме звезда. Это значит, что концы обмоток соединены между собой, а начала подсоединяются в сеть. Для возможности работы электродвигателя в однофазной сети 220 вольт необходимо для начала его обмотки переключить на схему треугольник. Т.е. конец первой соединить с началом второй, конец второй с началом третьей и конец третьей с началом первой.

Эти соединения и будут выводами двигателя для подключения к электропитанию. Два вывода необходимо через двухполюсной выключатель подсоединить к нулю и фазе сети в 220 вольт. Третий вывод через рабочие конденсаторы, соединить с каким либо из первых двух выводов из двигателя. Можно пробовать запускать.

Если запуск прошел успешно, двигатель работает с приемлемой мощностью и не сильно греется, то можно ничего не менять. Получилась работоспособная схема только с рабочими конденсаторами.

В случае запуска под нагрузкой или просто тяжелого пуска двигателя, он может раскручиваться долго и не достигать приемлемой мощности. Тогда потребуется включить в схему еще и пусковую емкость. Пусковые конденсаторы выбираются того же типа, что и рабочие. Одинаковой или в два раза превышающей ёмкость рабочих. И подключаются параллельно им. Используются только для пуска электродвигателя.

Очень удобно для такого пуска использовать своеобразный выключатель серии АП. Важно чтобы он был в исполнении с блок контактами. В нем при нажатии кнопки Пуск пара контактов остается замкнутыми до нажатия на кнопку Стоп. К ним подключают выводы двигателя и электросеть. Третий контакт замкнут только во время удержания кнопки Пуск, через него и подсоединяется пусковой конденсатор. Выключатели такого типа, только без предохранительной аппаратуры часто устанавливали на старые советские центрифуговые стиральные машинки.

Схема подключения электродвигателя без конденсаторов

Реально работающих схем подключения трехфазного двигателя в бытовую сеть 220 вольт без конденсаторов нет. Некоторые изобретатели предлагают подключать двигатели через индукционные катушки или сопротивления. Якобы, таким образом, создается сдвиг фаз на необходимый угол и двигатель вращается. Другие предлагают тиристорные схемы подключения. На практике это не работает, и не стоит изобретать велосипед. Когда есть дешевый и проверенный способ пуска посредством конденсаторов.

Действительно рабочим вариантом является подключение трехфазного асинхронного двигателя через преобразователь частоты. Преобразователь подключается в бытовую сеть и выдает трехфазный ток, причем с возможностью плавного пуска и регулировки оборотов. Но стоит такое чудо примерно от 7000 рублей с подключаемой мощностью всего в 250 ватт. Мощные приборы стоят гораздо дороже. За такие деньги можно приобрести электрооборудование с возможностью подключения к однофазной цепи. Будь то мини токарный станок, циркулярка, насос или компрессор.

голоса
Рейтинг статьи
Ссылка на основную публикацию