Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Реверсивный счетчик витков для намоточного станка

Реверсивный счетчик витков для намоточного станка

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Архив статей и поиск
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(500000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
▪ Ваши истории
▪ Викторина онлайн
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Голосования
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua


сделано в Украине

БЕСПЛАТНАЯ ТЕХНИЧЕСКАЯ БИБЛИОТЕКА

В нашей Бесплатной технической библиотеке Вы можете бесплатно и без регистрации скачать
Запоминающий реверсивный счетчик витков, статья 2011 года из журнала Радио.

В результатах поиска запишите название журнала, год и номер. Затем нажмите на ссылку «скачать в Бесплатной технической библиотеке» и бесплатно скачайте архив с нужным Вам номером.

Полное название статьи и дополнительная информация:
Байков, А. Запоминающий реверсивный счетчик витков. ТЕМАТИКА: Радиоэлектроника / Импульсные устройства. ОПИСАНЫ: счетчики, счетчики витков, реверсивные счетчики, запоминающие реверсивные счетчики, намоточные станки. АННОТАЦИЯ: В статье приводится описание и схема устройства простого и удобного в работе счетчика витков для намоточного станка.

Для быстрого бесплатного скачивания можно сразу перейти в нужный раздел Библиотеки.

Поиск по книгам, журналам и сборникам:

Рекомендуем скачать в нашей Бесплатной технической библиотеке:

Вса 97 счетчик витков не считает. Инструкция по изготовлению намоточного станка. Метод работы намоточного станка

Счётчик витков для намоточного станка

Когда-нибудь мотать трансформаторы вручную надоедает, и вот ты уже криво пилишь досочки бывшего шкафа для постройки намоточного станка. Станки эти бывают разными: с ручным приводом или с электрическим, с укладчиком витков и без. Но все их объединяет одно: необходимость счётчика витков. Это прекрасное дополнение позволит с комфортом наматывать многовитковые обмотки, как то, например, сетевые — под 1000 витков или первички выходных трансформаторов — под 3000. Хороший счётчик должен уметь считать в обоих направлениях: если ты решишь смотать часть витков, он должен вычесть их из подсчитанного количества. А если ты решишь мотать понемногу каждый день, то нужно бы запоминать, сколько уже намотал, чтобы потом продолжить с этого же места. Ну, и, разумеется, вся конструкция должна быть простейшей, на самых доступных деталях.

Как думаешь, быстро ли мы нашли такую? Правильно, нет. Конечно, понаделано всякого на атмегах с двухстрочными ЖК-дисплеями, но это же не бортовой компьютер! К тому же, некоторые счётчики витков просто не умеют считать назад.

И вот, наконец, нужная конструкция была найдена! Её придумал и воплотил Владимир, страница с авторским описанием:


Счётчик построен на распространённом микроконтроллере PIC16F628A. Четыре разряда количества витков отображаются семисегментным индикатором. Таким образом, можно мотать до 9999 витков, что актуально при намотке выходных трансформаторов. Имеются две кнопки: сброс и запоминание. В качестве датчиков используются два геркона. На валу станка необходимо просто прикрепить магнит.

Читайте так же:
Обслуживание общедомовых счетчиков учета


В авторском варианте используется индикатор с общим катодом какой-то неведомой распиновки. Нам пришлось переделать как плату, под более широкий индикатор, так и прошивку, под индикатор с общим анодом. Но авторский вариант был проверен в симуляторе, работает хорошо.

У этого счётчика есть одна особенность: он считает при скорости не менее одного изменения состояния герконов за пять секунд. Поэтому если ты медленно и аккуратно что-то подматываешь, то есть шанс, что он этот виток не посчитает. Но вероятность такого невелика, так что можно пользоваться.

Вероятно, конструкцию можно переделать с герконов на оптику, если кому нужно, или даже на механические контакты — дребезг подавляется программно.

Вариант 1: ATmega8 + Nokia 5110 LCD + питание 3V

В схеме используются Atmega8-8PU (внешний кварц частотой 8MHz), Nokia 5110 LCD и транзистор для обработки импульсов от геркона. Регулятор напряжения на 3,3V обеспечивает питание для всей цепи.

Все компоненты были смонтированы на макетной плате, включая разъемы для: ISP — программатора (USBAsp), 5110 Nokia LCD, питания (5V, подаваемого на 3.3V — регулятор), геркона, кнопки сброса и 2-контактный разъем, используемый для считывания полярности обмотки двигателя привода станка, чтобы знать, увеличивать или уменьшать счетчик.

Назначение разъемов:
J1: Питание. На разъем поступает 5V и дальше на стабилизатор L7833 для получения напряжения 3,3V, используемого ATmega8 и LCD.
J2: Разъем для ЖК-дисплея, идущий на Nokia 5110 LCD.
J3: Геркон. Вход импульсов для подсчета микроконтроллером.
J4: Разъем полярности. Он должен быть подключен параллельно обмотке двигателя. Схема слежения была расчитана для 12-вольтового двигателя, но ее можно применить под другое напряжение двигателя, регулируя номиналы делителей напряжения, образованные R3-R4 и R5-R6. Если двигатель подключен к прямой полярности, на PD0 будет высокий лог. уровень, если двигатель подключен к обратной полярности, то на PD1 будет высокий лог. уровень. Эта информация используется в коде для увеличения или уменьшения счетчика.
J5: Сброс счетчика. При нажатии кнопки, произойдет обнуление счетчика.
Разъем ISP: это 10-контактный разъем для программатора USBAsp AVR.

Схема устройства

Фото готового устройства


Вариант 2: ATmega8 + 2×16 HD44780 LCD + питание 5V

Некоторые из моих читателей попросили сделать вариант счетчика в котором используется дисплей 2×16 HD44780 (или меньший вариант 1×16). Для этих дисплеев требуется напряжение питания 5V, поэтому стабилизатор на 3,3V не актуален.

Схема устройства

Биты конфигурации микроконтроллера для обоих вариантов: LOW — 0xFF, HIGH — 0xC9.

Исходный код(Си), файлы прошивок для микроконтроллера

Но можно построить счетчик всего на одной микросхеме — универсальном программируемом микроконтроллере, имеющем в своем составе разнообразные периферийные устройства и способном решать очень широкий круг задач. Многие микроконтроллеры имеют особую область памяти — EEPROM. Записанные в нее (в том числе во время исполнения программы) данные, например, текущий результат счета, сохраняются и после отключения питания.

В предлагаемом счетчике применен микроконтроллер Attiny2313 из семейства AVR фирмы Almel. В приборе реализован реверсивный счет, вывод результата с гашением незначащих н

улей на четырехразрядный светодиодный индикатор, хранение результата в EEPROM при выключенном питании. Встроенный в микроконтроллер аналоговый компаратор использован для своевременного обнаружения уменьшения напряжения питания. Счетчик запоминает результат счета при отключении питания, восстанавливая его при включении, и аналогично механическому счетчику снабжен кнопкой обнуления показаний.

Схема счетчика представлена на рисунке. Шесть линий порта В (РВ2- РВ7) и пять линий порта D (PDO, PD1, PD4-PD6) использованы для организации динамической индикации результата счета на светодиодный индикатор HL1. Коллекторными нагрузками фототранзисторов VT1 и VT2 служат встроенные в микроконтроллер и включенные программно резисторы, соединяющие соответствующие выводы микроконтроллера с цепью его питания.

Увеличение результата счета N на единицу происходит в момент прерывания оптической связи между излучающим диодом VD1 и фототранзистором VT1, что создает нарастающий перепад уровня на входе INT0 микроконтроллера. При этом уровень на входе INT1 должен быть низким, т. е. фототранзистор VT2 должен быть освещен излучающим диодом VD2. В момент нарастающего перепада на входе INT1 при низком уровне на входе INT0 результат уменьшится на единицу. Другие комбинации уровней и их перепадов на входах INT0 и INT1 результат счета не изменяют.

По достижении максимального значения 9999 счет продолжается с нуля. Вычитание единицы из нулевого значения дает результат 9999. Если обратный счет не нужен, можно исключить из счетчика излучающий диод VD2 и фототранзистор VT2 и соединить вход INT1 микроконтроллера с общим проводом. Счет будет идти только на увеличение.

Читайте так же:
Энерго счетчик для дачи

Как уже сказано, детектором снижения напряжения питания служит встроенный в микроконтроллер аналоговый компаратор. Он сравнивает нестабилизированное напряжение на выходе выпрямителя (диодного моста VD3) со стабилизированным на выходе интегрального стабилизатора DA1. Программа циклически проверяет состояние компаратора. После отключения счетчика от сети напряжение на конденсаторе фильтра выпрямителя С1 спадает, а стабилизированное еще некоторое время остается неизменным. Резисторы R2-R4 подобраны так. что состояние компаратора в этой ситуации изменяется на противоположное. Обнаружив это, программа успевает записать текущий результат счета в EEPROM микроконтроллера еще до прекращения его функционирования по причине выключения питания. При последующем включении программа прочитает число, записанное в ЕЕРРОМ, и выведет его на индикатор. Счет будет продолжен с этого значения.

Ввиду ограниченного числа выводов микроконтроллера для подключения кнопки SB1, обнуляющей счетчик, использован вывод 13, служащий инвертирующим аналоговым входом компаратора (AIM) и одновременно — «цифровым» входом РВ1. Делителем напряжения <резисторы R4, R5) здесь задан уровень, воспринимаемый микроконтроллером как высокий логический При нажатии на кнопку SB1 он станет низким. На состояние компаратора это не повлияет, так как напряжение на входе AIN0 по-прежнему больше, чем на AIN1.

При нажатой кнопке SB1 программа выводит во всех разрядах индикатора знак «минус», а после ее отпускания начинает счет с нуля. Если при нажатой кнопке выключить питание счетчика, текущий результат не будет записан в EEPROM, а хранящееся там значение останется прежним.

Программа построена таким образом, что ее легко адаптировать к счетчику с другими индикаторами (например, с общими катодами), с другой разводкой печатной платы и т. п. Небольшая коррекция программы потребуется и при использовании кварцевого резонатора на частоту, отличающуюся более чем на 1 МГц от указанной.

При напряжении источника 15 В измеряют напряжение на контактах 12 и 13 панели микроконтроллера относительно общего провода (конт.10). Первое должно находиться в интервале 4. 4.5 В, а второе — быть больше 3,5 В, но меньше первого. Далее постепенно уменьшают напряжение источника. Когда оно упадет до 9. 10 В, разность значений напряжения на контактах 12 и 13 должна стать нулевой, а затем поменять знак.

Теперь можно установить в панель запрограммированный микроконтроллер, подключить трансформатор и подать на него сетевое напряжение. Спустя 1,5. 2 с нужно нажать на кнопку SB1. На индикатор счетчика будет выведена цифра 0. Если на индикатор ничего не выведено, еще раз проверьте значения напряжения на входах AIN0.AIN1 микроконтроллера. Первое должно быть больше второго.

Когда счетчик успешно запущен, остается проверить правильность счета, поочередно затеняя фототранзисторы непрозрачной для ИК лучей пластиной. Для большей контрастности индикаторы желательно закрыть светофильтром из красного органического стекла.


Еще если кто будет собирать счётчик на Atiny2313 без кварца,
Фьюзы я запрограммировал так


исходник ASM
Прошивка

Сайт находится в тестовом режиме. Приносим извинения за сбои и неточности.
Просим Вас писать нам о неточностях и проблемах через форму обратной связи.

Электронный счетчик витков для намоточного станка.

В число наиболее простых и тем не менее очень нужных технологических приспособлений, самостоятельное изготовление которых под силу даже малоопытным радиолюбителям, входит ручной намоточный станок. Это — стальной вал с резьбой М6, вращающийся в двух стойках; на одном его конце укреплена рукоятка для вращения. Стойки привинчены к массивному основанию. Чтобы не считать самому число оборотов вала — число витков обмотки, — обычно станок оснащают механическим счетчиком. Однако удобный миниатюрный счетчик оборотов с возможностью обнуления показаний был и остается дефицитом. Альтернативой механическому счетчику может служить электронный, описанный в этой статье. Предлагаемый реверсивный электронный счетчик собран на девяти КМОП-микросхемах (К561ТЛ1, 4 х К561ИЕ14, 4 х К176ИД2), транзисторе КТ315Б и четырехразрядном ЖК-индикаторе ИЖЦ5-4/8. Датчик импульсов вращения выполнен на основе двух герконов, замыкающихся при прохождении вблизи них постоянного магнита, закрепленного на поводке, установленном на валу станка. Устройство считает число оборотов вала от 0 до 9999. Даны чертежи печатных плат, на одной из которых монтируют ЖК индикатор, а на другой — все остальные детали счетчика.

Счётчик на микроконтроллере довольно прост для повторения и собран на популярном МК PIC16F628A с выводом индикации на 4 семисегментных светодиодных индикатора. Счётчик имеет два входа управления: «+1» и «-1», а также кнопку «Reset». Управление схемой нового счётчика реализовано таким образом, что как бы долго или коротко не была нажата кнопка входа, счёт продолжится только при её отпускании и очередном нажатии. Максимальное количество поступивших импульсов и соответственно показания АЛС — 9999. При управлении на входе «-1» счёт ведётся в обратном порядке до значения 0000. Показания счётчика сохраняются в памяти контроллера и при отключении питания, что сохранит данные при случайных перебоях питающего напряжения сети.

Читайте так же:
Счетчик логика спт 943

Принципиальная схема реверсивного счётчика на микроконтроллере PIC16F628A:

Сброс показаний счётчика и одновременно состояния памяти в 0, осуществляется кнопкой «Reset». Следует помнить, что при первом включении реверсивного счётчика на микроконтроллере, на индикаторе АЛС может высветиться непредсказуемая информация. Но при первом же нажатии на любую из кнопок информация нормализируется. Где и как можно использовать эту схему — зависит от конкретных нужд, например установить в магазин или офис для подсчёта посетителей или как индикатор намоточного станка. В общем думаю, что этот счётчик на микроконтроллере кому-нибудь принесёт пользу.

Если у кого-то под рукой не окажется нужного индикатора АЛС, а будет какой-нибудь другой (или даже 4 отдельных одинаковых индикатора), я готов помочь перерисовать печатку и переделать прошивку. В архиве на форуме схема, плата и прошивки под индикаторы с общим анодом и общим катодом. Печатная плата показана на рисунке ниже:

Имеется также новая версия прошивки для счётчика на микроконтроллере PIC16F628A. при этом схема и плата счётчика остались прежними, но поменялось назначение кнопок: кнопка 1 — вход импульсов (например, от геркона), 2 кнопка включает счёт на вычитание входных импульсов, при этом на индикаторе светится самая левая точка, 3 кнопка — сложение импульсов — светится самая правая точка. Кнопка 4 — сброс. В таком варианте схему счётчика на микроконтроллере можно легко применить на намоточном станке. Только перед намоткой или отмоткой витков нужно сначала нажать кнопку «+» или «-«. Питается счётчик от стабилизированного источника напряжением 5В и током 50мА. При необходимости можно питать от батареек. Корпус зависит от ваших вкусов и возможностей. Схему предоставил — Samopalkin

Реверсивный счетчик витков для намоточного станка

Ознакомившись с рядом опубликованных в журнале конструкций счётчиков различного назначения (например, [1, 2]), я принял решение разработать свой вариант счётчика витков, в котором использована энергонезависимая память микроконтроллера. В результате удалось создать простой и удобный в работе счётчик витков для намоточного станка, не содержащий дефицитных деталей.

Он способен считать от 0 до 9999 оборотов вала, после чего показания индикатора обнуляются и счёт начинается заново. При вращении вала в обратную сторону индикатор уменьшает показания на единицу на каждый оборот.


Рис. 1

Счётчик состоит из нескольких узлов (рис. 1). Основой конструкции служит микроконтроллер DD1, к которому через токоограничительные резисторы R10—R16 подключён четырёхразрядный светодиодный индикатор HG1. Две оптопары — излучающий ИК диод— фототранзистор (VD2VT1, VD3VT2), — образующие датчик числа оборотов рабочего вала станка, формируют импульсы низкого уровня, по которым микроконтроллер определяет направление вращения и число оборотов вала. Предусмотрена кнопка SB1 для обнуления памяти, а также вспомогательные цепи: R2C2, работающая в составе встроенного тактирующего генератора микроконтроллера, VD1C1, сохраняющая напряжение питания, необходимое для перехода микроконтроллера в режим SLEEP, и R6R8, следящая за напряжением питания счётчика.


Известно, что микроконтроллеры семейства PIC довольно капризны при работе с EEPROM (особенно, когда запись в неё происходит автоматически). Уменьшение напряжения питания может исказить содержимое памяти При работе счётчика линия RB1 (вывод 7) микроконтроллера, к которой подключена цепь R6R8, опрашивается на наличие напряжения питания, и если оно пропадает, то благодаря цепи VD1C1 микроконтроллер успевает перейти в спящий режим, тем самым блокируя дальнейшее выполнение программы и защищая информацию в EEPROM. В процессе счёта микроконтроллер будет сохранять в памяти числа после каждого оборота рабочего вала станка. При каждом очередном включении питания индикатор HG1 отобразит то число, что было до отключения.
Датчик представляет собой небольшую печатную плату (22×22 мм), на которой смонтированы два излучающих диода и два фототранзистора, установленных так, что образуют два оптических канала передатчик—приемник. Оптические оси каналов параллельны, межосевое расстояние — около 10 мм.
На рабочем валу станка неподвижно закреплена шторка в виде диска из жёсткого непрозрачного для ИК лучей материала (текстолит, гетинакс, металл, пластик) толщиной 1. 2 мм. Диаметр шторки — 35. 50 мм, диаметр центрального установочного отверстия равен диаметру вала. Плату на станке фиксируют так, чтобы шторка, вращаясь вместе с валом, могла перекрывать собой оба ИК луча.
В шторке пропиливают вырез в форме неполного сектора. Угловая ширина и глубина выреза должны быть такими, чтобы при вращении вала шторка обеспечивала кратковременное прохождение ИК излучения сначала только через один канал, затем через оба и, наконец, только через другой, как это схематически проиллюстрировано на рис. 2. Цветом показаны каналы, открытые в той или иной позиции. Такой порядок следования сигналов с датчика даёт микроконтроллеру возможность определять направление вращения рабочего вала станка
.

Читайте так же:
Принтер бротхер 2132 обнулить счетчик

Счётчик рассчитан на питание от батареи из трёх гальванических элементов АА (R6), но можно использовать любой сетевой блок со стабилизированным выходным напряжением 5 В.
Датчик смонтирован на печатной плате из фольгированного стеклотекстолита толщиной 1 мм. Чертёж платы показан на рис. 3. Токоограничива-ющий резистор R3 припаян со стороны печатных проводников а излучающие диоды и фототранзисторы — с другой.
Остальные детали (кроме батареи GB1 и выключателя SA1) размещены на второй плате, изготовленной из такого же стеклотекстолита. Её чертёж представлен нарис. 4. Все резисторы (кроме R3) на ней размещены со стороны печати поверхностным монтажом, а микроконтроллер, цифровой индикатор, конденсаторы, диод, кнопка SB1 и проволочные перемычки — с противоположной стороны. Микроконтроллер установлен в панель, впаянную в плату.
Плата датчика скреплена с основной двумя скобами, согнутыми из медной лужёной проволоки диаметром 1,2 мм и припаянными к краевым печатным проводникам плат. Для крепления плат к корпусу станка использованы самодельные держатели с ушком для винта, изготовленные из такой же проволоки и также припаянные к основной плате.


Общий вид одного из конструктивных вариантов счётчика, установленного на намоточном станке, показан на фото рис. 5. Батарея гальванических элементов с выключателем прикреплены к станку сзади.

Для датчика, кроме указанных на схеме, можно использовать излучающие диоды SEP8706-003, SEP8506-003, KM-4457F3C, АЛ144А, АЛ108АМ и другие, а фототранзисторы — SDP8436-003, КТФ102А. Очень хорошо подходят также оптопары от старых шариковых компьютерных манипуляторов — мышей; у излучающих диодов короткий вывод—катод, а у фототранзисторов — эмиттер.
Следует заметить, что лучше использовать фототранзисторы в непрозрачном (чёрном) корпусе — в этом случае вероятность сбоев и ошибок в счёте из-за попадания на фотоприемники световых помех от внешних ярких источников будет минимальна. Если же фототранзисторы, имеющиеся в наличии, прозрачные, на каждый из них следует на деть отрезок чёрной ПВХ трубки с отверстием напротив линзы, а весь датчик закрыть от постороннего света накладкой из чёрной бумаги. Если шторка изготовлена из отражающего свет материала, её рекомендуется покрыть чёрной матовой краской.
Вместо «поверхностных» резисторов можно использовать МЛТ-0,125 или С2-23 мощностью 0,062 Вт. Кнопка SB1 — любая, подходящая по месту крепления на плате. Вместо E40281-L-O-0-W подойдёт цифровой индикатор FYQ-2841CLR.

Программа микроконтроллера разработана и отлажена в среде Proteus, после чего с помощью программатора ICProg загружена в микроконтроллер. После установки микроконтроллера в панель при первом и последующих включениях счётчика индикатор отобразит знак «минус» во всех знакоместах. Примерно через две секунды на табло появятся нули — это признак готовности счётчика к работе.

В программе предусмотрена функция аварийного обнуления памяти на тот случай, когда в неё попадёт ошибочная информация и микроконтроллер «зависает» (такое бывает крайне редко, но быть может). Для возвращения микроконтроллера в рабочий режим нужно выключить питание счётчика, нажать на кнопку «Обнуление» и, не отпуская её, включить питание. Как только табло отобразит нули, можно продолжать работать, но информация о прежнем числе витков будет, разумеется, утрачена.
В налаживании правильно собранное устройство не нуждается.

Применяем калькулятор в качестве счетчика импульсов для разных устройств

Все знают для чего существует микрокалькулятор,но оказывается кроме математических вычислений он способен и на многое другое. Обратите внимание, если нажать кнопку «1», затем «+» и далее нажимать «=», то с каждым нажатием на кнопку «=» число на дисплее будет увеличиваться на единицу. Чем не цифровой счетчик?

Если к кнопке «=» подпаять два проводка, их можно будет использовать как вход счетчика, например, счетчика витков для намоточного станка. И ведь, счетчик может быть и реверсивным, для этого нужно сначала набрать на дисплее число, например, число витков катушки, а затем нажать кнопку « — », и кнопку «1». Теперь при каждом нажатии на «=» число будет уменьшаться на единицу.

Однако, нужен датчик. Самый простой вариант, — геркон (рис.1). Геркон проводами подключаем параллельно кнопке «=», сам геркон стоит на неподвижной части намоточного станка, а магнит закрепим на подвижной, так что бы за один оборот катушки магнит один раз проходил возле геркона, вызывая его замыкание.

Читайте так же:
Счетчики норма свкм 15у

Вот и все. Нужно намотать катушку, делаем «1+» и далее с каждым оборотом, то есть, с каждым витком показания дисплея будут увеличиваться на единицу. Нужно отмотать катушку, — набираем на дисплее микрокалькулятора число витков катушки, и делаем «-1», далее с каждым оборотом размотки катушки показания дисплея будут уменьшаться на единицу.

Рис.1. Схема подключения геркона к калькулятору.

А, предположим, нужно измерить большое расстояние, например, длину дороги, размер земельного участка, длину маршрута. Берем обычный велосипед. Правильно, — на вилке крепим неметаллический кронштейн с герконом, а магнит закрепляем на одной из спиц велосипедного колеса. Затем, измеряем длину окружности колеса, и выраженную её в метрах, например, получилась длина окружности колеса 1,45 метра, так и набираем «1,45+», после чего с каждым оборотом колеса показания дисплея будут увеличиваться на 1,45 метра, и в результате на дисплее будет видно пройденное велосипедом расстояние в метрах.

Если есть неисправный китайский кварцевый будильник (обычно механизм у них очень не долговечный, а вот электронная плата весьма надежна), можно взять от него плату и по схеме показанной на рисунке 2 сделать из неё и калькулятора секундомер.

Питание на плату будильника поступает через параметрический стабилизатор на светодиоде HL1 (светодиод должен быть с прямым напряжением 1,4-1,7V, например, красный АЛ307) и резисторе R2.

Импульсы формируются из импульсов управления шаговым двигателем часового механизма (катушки должны быть отключены, плата используется самостоятельно). Эти импульсы через диоды VD1 и VD2 поступают на базу транзистора VТ1. Напряжение питания платы будильника всего 1,6V, при этом уровни импульсов на выходах для шагового двигателя еще ниже.

Чтобы схема нормально работала, необходимы диоды с низким уровнем прямого напряжения, такие как ВАТ85, или германиевые.

Эти импульсы поступают на транзисторный ключ на VТ1 и VТ2. В коллекторной цепи VТ2 включена обмотка маломощного реле К1, контакты которого подключены параллельно кнопке «=» микрокалькулятора. Когда есть питание +5V контакты реле К1 будут замыкаться с частотой 1 Гц.

Чтобы запустить секундомер нужно предварительно сделать действие «1+», затем выключателем S1 включить питание схемы формирователя импульсов. Теперь с каждой секундой показания дисплея будут увеличиваться на единицу.

Чтобы остановить счет достаточно выключить питание формирователя импульсов выключателем S1.

Чтобы был счет на уменьшение, нужно сначала набрать на дисплее микрокалькулятора исходное число секунд, а потом сделать действие «-1» и включить питание формирователя импульсов выключателем S1. Теперь с каждой секундой показания дисплея будут убывать на единицу, и по ним можно будет судить, сколько времени осталось до некоторого события.

Рис.2. Схема превращения китайского бодульника в секундомер.

Рис.3. Схема счетчика пересечений ИК-луча с применением калькулятора.

Если использовать инфракрасный фотодатчик, работающий на пересечение луча, можно приспособить микрокалькулятор считать какие-то предметы, например, коробки, перемещающиеся по транспортерной ленте, либо, установив датчик в проходе, считать входящих в помещение людей.

Принципиальная схема ИК-датчика отражения для работы с микрокалькулятором показана на рисунке 3.

Генератор ИК-сигнала выполнен на микросхеме А1 типа «555» (интегральный таймер) Он представляет собой генератор импульсов частотой 38 кГц, на выходе которого включен через ключ инфракрасный светодиод. Частота генерации зависит от цепи C1-R1, при налаживании подбором резистора R1 нужно установить на выходе микросхемы (вывод 3) частоту близкую к 38 кГц. Светодиод HL1 помещают с одной стороны прохода, надев на него непрозрачную трубку, которая должна быть точно направлена на фотоприемник.

Фотоприемник выполнен на микросхеме HF1 — это стандартный интегральный фотоприемник типа TSOP4838 для систем дистанционного управления телевизоров и другой домашней техники. Когда на этот фотоприемник попадает луч от HL1, на его выходе — ноль. При отсутствии луча -единица.

Таким образом, между HL1 и HF1 ничего нет — контакты реле К1 разомкнуты, а в момент прохождения какого-либо объекта — контакты реле замыкаются. Если на микрокалькуляторе сделать действие «1+», то с каждым прохождением объекта между HL1 и HF1 показания дисплея микрокалькулятора будут увеличиваться на единицу, и по ним можно будет судить, сколько коробок отгружено или сколько человек вошло.

голоса
Рейтинг статьи
Ссылка на основную публикацию