Счетчик гейгера счетчик ионизирующего излучения
Счетчик гейгера счетчик ионизирующего излучения
ПОЙМИТЕ РАЗНИЦУ, ИЛИ КАК ПРАВИЛЬНО ВЫБРАТЬ ДОЗИМЕТР.
Чем отличается профессиональный дозиметр от бытового?
Какие характеристики дозиметров — ключевые?
Как выбрать дозиметр?
Основные группы дозиметров
При всем многообразии представленных на рынке дозиметров большую их часть можно разделить на две группы: дозиметры на счетчиках Гейгера-Мюллера и дозиметры, использующие в качестве детекторов сцинтилляторы.
Важной характеристикой детектора гамма-излучения является его эффективность. Эффективность счётчика Гейгера-Мюллера зависит от толщины стенок счётчика, их материала и энергии гамма-излучения. Толщина стенки счётчика выбирается из условия её равенства длине свободного пробега вторичных электронов в материале стенки (обычно — порядка 50 мкм). При большой толщине стенки вторичные электроны не пройдут в рабочий объем счётчика, и возникновения импульса тока не произойдет. Так как гамма-излучение слабо взаимодействует с тонкими стенками счетчика, то обычно эффективность гамма-счётчиков также мала и составляет всего 1-2 %. Другим недостатком счётчика Гейгера-Мюллера является то, что он не даёт возможность идентифицировать частицы и определять их энергию. Эти недостатки отсутствуют в сцинтилляционных счётчиках.
Эффективность детектора определяется массой его рабочего вещества — той его части, в которой происходит поглощение и преобразование гамма-излучения. Масса счетчика Гейгера-Мюллера СБМ-20, применяемого в подавляющем большинстве дозиметров — не более 9 г. Масса рабочего вещества (тонкой трубочки) — не более 1 г.
Масса рабочего вещества сцинтилляционного детектора это весь объем кристалла. К примеру, для детектора на основе йодистого натрия диаметром 40мм и высотой 40 мм масса рабочего вещества — не менее 180 г. Эффективность детекторов на основе сцинтилляторов составляет 50…90%, в зависимости от типа и объема рабочего вещества. В итоге, чувствительность детекторов на основе сцинтилляторов в сотни раз превышает чувствительность счетчиков Гейгера-Мюллера.
Рекомендации МАГАТЭ
В августе 2003 года МАГАТЭ* совместно с Всемирной таможенной организацией, Европолом и Интерполом выпустили документ «Обнаружение радиоактивных материалов на границе» (ТЕСDOC-1312/R), который содержит обоснование основных требований к системам и приборам, обеспечивающим надежный радиационный контроль транспортных средств и пешеходов.
Основными (ключевыми) характеристиками таких приборов являются чувствительность и быстродействие. Эти характеристики связаны между собой. Это объясняется просто. Что такое чувствительность детектора гамма-излучения? Это количество зарегистрированных гамма-квантов при определенной мощности ионизирующего излучения. Чем больше этих зарегистрированных взаимодействий гамма-квантов с веществом детектора, тем раньше и с большей точностью мы измерим уровень гамма-излучения и обнаружим аномалию.
Уровни расследования и порога срабатывания тревожного сигнала прибора
Распределения отчетов прибора в большинстве случаев описываются Гауссовым распределением. Параметры этого распределения зависят от скорости счетов детектора прибора (от чувствительности) и от времени накопления результата.
В разделе 5 ТЕСDOC-1312/R приводятся понятия уровней расследования и порога срабатывания тревожного сигнала прибора. На рисунке 1 слева — кривая распределения фоновой частоты отчетов прибора, справа — кривая распределения частоты отчетов прибора при дополнительном облучении. При фоновом облучении отчеты, превышающие порог (правее точки С), будут вызывать ложные срабатывания тревожной сигнализации. Частота этих срабатываний пропорциональна площади части фонового пика (закрашено желтым цветом). При облучении отчеты прибора, не достигшие порога (левее точки С), будут означать пропуски аномалий. Частота пропусков пропорциональна площади части правого пика (закрашено синим цветом). Порог срабатывания прибора может быть установлен не только в точке С, как показано на рисунке 1. Увеличивая порог, мы уменьшим частоту ложных срабатываний и увеличим вероятность пропусков.
В качестве примера, приводим кривые распределения частоты отчетов для двух приборов, работающих в реальных фоновых условиях (рисунок 2): первый — на основе сцинтиллятора, имеющий чувствительность 800 с -1 /мкЗв/час (импульсов в секунду на микрозиверт в час), второй — на основе двух счетчиков Гейгера-Мюллера СБМ-20, суммарная чувствительность которых — 4 с -1 /мкЗв/час. Левые пики на графиках соответствуют фоновому излучению, а правые — режиму облучения.
Из приведенных графиков видно, что сцинтилляционный дозиметр «Ритм-1М» надежно и быстро различает аномальное облучение, в то время как такие же уровни облучения прибора на счетчиках Гейгера-Мюллера, даже при 20 секундах измерения не дают возможности отличить аномалию от фонового облучения.
Приведенные иллюстрации подтверждают тезис ТЕСDOC-1312/R о том, что для обнаружения радиоактивных материалов необходимой чувствительностью обладают только приборы на основе сцинтилляторов: «Хотя карманные приборы могут снабжаться детекторами излучения различных типов, лишь те приборы, в которых используется сцинтилляционные детекторы, обладают достаточной чувствительностью для этого вида применения».
Заключение
Резюмируя, можно сказать, что при выборе дозиметра стоит обращать особое внимание на чувствительность и быстродействие прибора, поскольку эти параметры являются ключевыми, и определяют пригодность тех или иных приборов для обнаружения радиационно-загрязненных фрагментов при входном контроле металлолома и других грузов.
Счетчик Гейгера: устройство и бытовые вариации
Счетчик Гейгера — основной сенсор для измерения радиации. Он регистрирует гамма-, альфа-, бета-излучение и рентгеновские лучи. Обладает самой высокой чувствительностью в сравнении с другими способами регистрации радиации, например, ионизационными камерами. Это главная причина его повсеместного распространения. Другие сенсоры для измерения радиации используются очень редко. Почти все приборы дозиметрического контроля построены именно на счетчиках Гейгера. Они выпускаются массово, и есть приборы различных уровней: от дозиметров военной приемки до китайского ширпотреба. Сейчас приобрести какой-либо прибор для измерения радиации – не проблема.
Повсеместного распространения дозиметрических приборов еще совсем недавно не было. Так к 1986 году во время чернобыльской аварии оказалось, что у населения нет просто никаких приборов дозиметрической разведки, что кстати, дополнительно усугубило последствия катастрофы. При этом, несмотря на распространение радиолюбительства и кружков технического творчества, счетчики Гейгера не продавались в магазинах, поэтому изготовление самодельных дозиметров было невозможным.
- Принцип работы счетчиков Гейгера
- Возможности счетчиков Гейгера, чувствительность, регистрируемые излучения
- Измерение радиации счетчиком Гейгера, схема дозиметра
- Сравнение газоразрядного счетчика Гейгера с полупроводниковым датчиком радиации
- Измерение альфа-, бета- и гамма-излучения
- Индивидуальный дозиметр с счетчиком Гейгера
- Самодельные дозиметры, зачем они нужны?
Принцип работы счетчиков Гейгера
Это электровакуумный прибор с предельно простым принципом работы. Датчик радиоактивных излучений представляет собой металлическую или стеклянную камеру с металлизацией, заполненную разряженным инертным газом. По центру камеры располагают электрод. Внешние стенки камеры подключают к источнику высокого напряжения (обычно 400 вольт). Внутренний электрод — к чувствительному усилителю. Ионизирующие излучения (радиация) представляют собой поток частиц. Они буквально переносят электроны от высоковольтного катода в нити анода. На ней просто наводится напряжение, которое можно уже измерить, подключив к усилителю.
Высокая чувствительность счетчика Гейгера обусловлена лавинообразным эффектом. Энергия, которую регистрирует усилитель на выходе, – это не энергия источника ионизирующего излучения. Это энергия высоковольтного блока питания самого дозиметра. Проникшая частица только переносит электрон (энергетический заряд, который превращается в ток, регистрируемый измерителем). Между электродами введена газовая смесь, состоящая из благородных газов: аргона, неона. Она призвана гасить высоковольтные разряды. Если возникнет такой разряд, то это будет ложное срабатывание счетчика. Последующая измерительная схема игнорирует такие выбросы. Кроме того, высоковольтный блок питания тоже должен быть от них защищен.
Схема питания в счетчике Гейгера обеспечивает ток на выходе в нескольких микроампер при выходном напряжении 400 вольт. Точное значение напряжения питания устанавливается для каждой марки счетчика по его технической спецификации.
Возможности счетчиков Гейгера, чувствительность, регистрируемые излучения
С помощью счетчика Гейгера можно зарегистрировать и с высокой точностью измерить гамма- и бета-излучение. К сожалению, нельзя распознать вид излучения напрямую. Это делается косвенным методом с помощью установки преград между сенсором и обследуемым объектом или местностью. Гамма-лучи обладают высокой проницаемостью, и их фон не меняется. Если дозиметр засек бета-излучение, то установка разделительной преграды даже из тонкого листа металла почти полностью перекроет поток бета-частиц.
Распространенные в прошлом комплекты индивидуальных дозиметров ДП-22, ДП-24 не использовали счетчиков Гейгера. Вместо них там использовался сенсор ионизационная камера, поэтому чувствительность была очень низкой. Современные дозиметрические приборы на счетчиках Гейгера обладают в тысячи раз большей чувствительностью. С помощью них можно регистрировать естественные изменения солнечного радиационного фона.
Примечательная особенность счетчика Гейгера — чувствительность, в десятки и сотни раз превышающая необходимый уровень. Если в совершенно защищенной свинцовой камере включить счетчик, то он покажет огромный естественный радиационный фон. Эти показания не являются дефектом конструкции самого счетчика, что было проверено многочисленными лабораторными исследованиями. Такие данные — следствие естественного радиационного космического фона. Эксперимент только показывает, насколько чувствительным является счетчик Гейгера.
Специально для измерения этого параметра в технических характеристиках указывается значение «чувствительность счетчика имп мкр» (импульсов в микросекунду). Чем больше этих импульсов — тем больше чувствительность.
Измерение радиации счетчиком Гейгера, схема дозиметра
Схему дозиметра можно разделить на два функциональных модуля: высоковольтный блок питания и измерительная схема. Высоковольтный блок питания — аналоговая схема. Измерительный модуль на цифровых дозиметрах всегда цифровой. Это счетчик импульсов, который выводит соответствующее значение в виде цифр на шкалу прибора. Для измерения дозы радиации необходимо подсчитать импульсы за минуту, 10, 15 секунд или другие значения. Микроконтроллер пересчитывает число импульсов в конкретное значение на шкале дозиметра в стандартных единицах измерения радиации. Вот самые распространенные из них:
- рентген (обычно используется микрорентген);
- Зиверт (микрозиверт — мЗв);
- Бэр;
- Грей, рад,
- плотность потока в микроваттах/м2.
Зиверт — наиболее популярная единица измерения радиации. К ней соотнесены все нормы, никаких дополнительных пересчетов проводить не требуется. Бэр — единица для определения влияния радиации на биологические объекты.
Сравнение газоразрядного счетчика Гейгера с полупроводниковым датчиком радиации
Счетчик Гейгера является газоразрядным прибором, а современная тенденция микроэлектроники — повсеместное от них избавление. Были разработаны десятки вариантов полупроводниковых сенсоров радиации. Регистрируемый ими уровень радиационного фона значительно выше, чем для счетчиков Гейгера. Чувствительность полупроводникового сенсора хуже, но у него другое преимущество — экономичность. Полупроводникам не требуется высоковольтного питания. Для портативных дозиметров с батарейным питанием они хорошо подходят. Еще одно их преимущество — регистрация альфа-частиц. Газовый объем счетчика существенно больше полупроводникового сенсора, но все равно его габариты приемлемы даже для портативной техники.
Измерение альфа-, бета- и гамма-излучения
Гамма-излучение измерять наиболее просто. Это электромагнитное излучение, представляющее собой поток фотонов (свет — тоже поток фотонов). В отличие от света у него гораздо более высокая частота и очень малая длина волны. Это позволяет ему проникать сквозь атомы. В гражданской обороне гамма-излучение – это проникающая радиация. Она проникает сквозь стены домов, автомобили, различные сооружения и задерживается только слоем земли или бетона в несколько метров. Регистрация гамма-квантов проводится с градуировкой дозиметра по естественному гамма-излучению солнца. Источников радиации не требуется. Совсем другое дело с бета- и альфа-излучением.
Если ионизирующиее излучение α (альфа-излучение) исходит от внешних объектов, то оно почти безопасно и представляет собой поток ядер атомов Гелия. Пробег и проницаемость этих частиц небольшая – нескольких микрометров (максимум миллиметров) – в зависимости от проницаемости среды. Ввиду этой особенности оно почти не регистрируется счетчиком Гейгера. В то же время регистрация альфа-излучения важна, так как эти частицы чрезвычайно опасны при проникновении внутрь организма с воздухом, пищей, водой. Для их декретирования счетчики Гейгера используются ограничено. Больше распространены специальные полупроводниковые сенсоры.
Бета-излучение отлично регистрируется счетчиком Гейгера, потому что бета-частица представляет собой электрон. Она может пролететь сотни метров в атмосфере, но хорошо поглощается металлическими поверхностями. В связи с этим счетчик Гейгера должен иметь окошко из слюды. Металлическая камера изготавливается с небольшой толщиной стенки. Состав внутреннего газа подбирается таким образом, чтобы обеспечить небольшой перепад давления. Детектор бета-излучения ставится на выносном зонде. В быту такие дозиметры мало распространены. Это в основном военная продукция.
Индивидуальный дозиметр с счетчиком Гейгера
Этот класс приборов обладает высокой чувствительностью в отличие от устаревших моделей с ионизационными камерами. Надежные модели предлагаются многими отечественными производителями: «Терра», «МКС-05», «ДКР», «Радэкс», «РКС». Это все автономные приборы с выводом данных на экран в стандартных единицах измерения. Есть режим показания накопленной дозы облучения, так и мгновенного уровня фона.
Перспективное направление — бытовой дозиметр-приставка к смартфону. Такие устройства выпускают зарубежные производители. У них богатые технические возможности, есть функция хранения показаний, калькуляции, пересчета и суммирования излучения за дни, недели, месяцы. Пока что из-за низких объемов производства стоимость этих приборов довольно высокая.
Самодельные дозиметры, зачем они нужны?
Счетчик Гейгера является специфическим элементом дозиметра, совершенно недоступным для самостоятельного изготовления. Кроме того, он встречается только в дозиметрах или продается отдельно в магазинах радиотоваров. Если этот датчик есть в наличии, все остальные компоненты дозиметра могут быть собраны самостоятельно из деталей разнообразной бытовой электроники: телевизоров, материнских плат и др. На радиолюбительских сайтах, форумах сейчас предлагается около десятка конструкций. Собирать стоит именно их, поскольку это самые отработанные варианты, имеющие подробные руководства по настройке и наладке.
Схема включения счетчика Гейгера всегда подразумевает наличие источника высокого напряжения. Типичное рабочее напряжение счетчика — 400 вольт. Его получают по схеме блокинг-генератора, и это самый сложный элемент схемы дозиметра. Выход счетчика можно подключить к усилителю низкой частоты и подсчитывать щелчки в динамике. Такой дозиметр собирается в экстренных случаях, когда времени на изготовление практически нет. Теоретически, выход счетчика Гейгера можно подключить к аудиовходу бытовой аппаратуры, например, компьютера.
Самодельные дозиметры, пригодные для точных измерений, все собираются на микроконтроллерах. Навыки программирования здесь не нужны, так как программа записывается готовой из бесплатного доступа. Сложности здесь типичные для домашнего электронного производства: получение печатной платы, пайка радиодеталей, изготовление корпуса. Все это решается в условиях небольшой мастерской. Самодельные дозиметры из счетчиков Гейгера делают в случаях, когда:
- нет возможности приобрести готовый дозиметр;
- нужен прибор со специальными характеристиками;
- необходимо изучить сам процесс постройки и наладки дозиметра.
Самодельный дозиметр градуируется по естественному фону с помощью другого дозиметра. На этом процесс постройки заканчивается.
Музей Лунариум
С 10 октября Планетарий открыт для посещения.
Время работы: с 10:00 до 21:00,
Выходной день: вторник
«Ретро-кафе»: с 11:00 до 20:00.
Музей «Лунариум» временно закрыт
+7 (495) 221-76-90
АО «Планетарий» © 2017 г. Москва, ул.Садовая-Кудринская, д. 5, стр. 1
- Залы Планетария
- Схема Планетария
- Экспонаты
Экспонат моделирует прибор – счетчик Гейгера, который служит для регистрации уровня ионизирующего излучения.
Счетчик Гейгера был изобретен в 1908 г. немецким физиком Х. Гейгером (1882г.-1945г.) и служит для измерения радиационного фона окружающей Вас среды и любых предметов. При обнаружении радиации счетчик издает особые щелчки. Уровень радиации указывается на шкале. Что же такое радиация?
Большинство атомов стабильно, это означает, что они неизменны. Но некоторые атомы неустойчивы и способны самопроизвольно разрушаться, превращаясь в атомы других элементов. Это явление называется радиоактивным распадом.
Радиацией или ионизирующим излучением называют потоки элементарных частиц, образующиеся в результате ядерных реакций или радиоактивного распада. Элементы, способные к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения, называются радиоактивными.
Насколько опасна радиация для человека? Остановимся на этом вопросе более подробно.
Жизнь на Земле возникла и развивалась на фоне ионизирующего излучения. Естественная радиация существовала всегда: и до появления человека, и до появления планеты. На протяжении всей истории существования Земли разные виды излучения попадают на её поверхность из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Такой вид излучения называется фоновым излучением. Таким образом, радиоактивно все, что нас окружает: почва, вода, растения и животные.
Степень радиоактивного воздействия на вещество, определяется дозой ионизирующего излучения. Доза ионизирующего излучения – количество энергии, поглощённой в единице массы среды.
Если данная величина не превышает определенного уровня (предельно допустимой дозы), то такое радиоактивное воздействие не вызовет в тканях организма неблагоприятных изменений. Но если доза ионизирующего излучения выше этого уровня – в тканях организма могут происходить сложные физические, химические и биохимические процессы. Предельно допустимая доза зависит от свойств облучаемой среды и рассчитывается в каждом конкретном случае отдельно.
Воздействие естественного радиационного фона находится в рамках предельно допустимой дозы, поэтому не представляет для нас опасности.
Поверните диск экспоната, на котором расположены минералы, таким образом, чтобы каждый из образцов оказался в зоне регистрации ионизирующего излучения (круглого глазка, расположенного в центре красного диска). Вы услышите характерный щелчок, свидетельствующий о регистрации ионизирующей частицы. Таким образом, Вы сможете определить, в каком из образцов наибольшее количество радиоактивных частиц. Каждый из представленных в экспонате образцов абсолютно безопасен для здоровья человека.
Самодельный счётчик Гейгера на ESP8266 с сенсорным экраном
Я разработал и собрал счётчик Гейгера – устройство, способное обнаруживать ионизирующее излучение и предупреждать об опасных уровнях радиации в окружающей среде знакомыми щелчками. Его также можно использовать для поиска минералов, и определять, есть ли в найденном вами камне урановая руда!
В интернете можно найти много готовых наборов и инструкций по сборке счётчика Гейгера, но я хотел сделать нечто уникальное – и я разработал GUI-дисплей с сенсорным управлением и красивым выводом информации на экран.
Шаг 1: базовая теория
Принцип работы счётчика Гейгера прост. Тонкостенная трубка с газом при низком давлении внутри (трубка Гейгера-Мюллера) подвергается действию тока высокого напряжения. Создаваемого электрического поля недостаточно для диэлектрического пробоя, поэтому ток через трубку не течёт – до тех пор, пока фотон ионизирующего излучения не пройдёт через неё.
Когда сквозь трубку проходит бета- или гамма-излучение, оно может ионизировать часть молекул газа внутри, что приводит к появлению свободных электронов и положительных ионов. Частицы начинают двигаться под воздействием электрического поля, и электроны набирают достаточно скорости, чтобы начать ионизировать другие молекулы, что приводит к каскаду заряженных частиц, которые на короткое время начинают проводить ток. Этот краткий импульс тока можно зарегистрировать при помощи приведённой схемы, которая создаёт щёлкающий звук, или, как в данном случае, передаёт информацию в микроконтроллер, который может проводить вычисления с этими данными.
Я использую трубку Гейгера-Мюллера SBM-20, поскольку её легко найти на eBay, и она достаточно чувствительна к бета- и гамма-излучению.
Шаг 2: запчасти и сборка
В качестве мозга проекта я использовал плату NodeMCU с микроконтроллером ESP8266. Мне хотелось взять то, что можно программировать как Arduino, и что будет достаточно быстрым, чтобы отрисовывать изображение на экране без задержек.
Для подачи высокого напряжения я использовал трансформатор с Aliexpress – он подаёт 400 В на трубку Гейгера-Мюллера. Учитывайте, что при проверке выходного напряжения его не получится измерять мультиметром напрямую – при слишком малом импедансе напряжение будет падать, и показания будут неточными. Сделайте делитель напряжения с сопротивлением не менее 100 МОм последовательно с мультиметром.
Питается устройство от аккумулятора формата 18650, через ещё один трансформатор, подающий стабильные 4,2 В на оставшуюся схему.
Вот список всех необходимых компонентов:
- SBM-20 GM трубка (ищите на eBay).
- Высоковольтный трансформатор (AliExpress).
- Трансформатор для 4,2В (AliExpress).
- Плата NodeMCU esp8266 (Amazon).
- 2.8″ SPI сенсорный экран (Amazon).
- 18650 батарейка (Amazon) или любая LiPo батарейка на 3,7 В (500+ mAh).
- 18650 держатель для батарейки (Amazon). Этот держатель оказался великоват для платы, и мне пришлось загнуть контакты внутрь. Рекомендую взять батарейку LiPo поменьше, и припаять провода от разъёма JST к контактам для питания на плате.
Различные электронные компоненты:
- Резисторы на 330, 1K, 10K, 22K, 100K, 1,8M, 3M Ом. Для создания делителя напряжения также потребуются резисторы на 10 МОм.
- Конденсаторы: 220 пФ.
- Транзисторы: 2N3904.
- Светодиод 3 мм.
- Пищалка: любой пьезоэлемент на 12-17 мм.
- Держатель для предохранителя 6,5 х 32 (для надёжного крепления трубки).
- Выключатель 12 мм.
У себя на GitHub я выложил схему в PDF – там видно, как соединять все компоненты. Скорее всего, дешевле заказывать их у оптовых продавцов типа DigiKey или LCSC. На GitHub есть электронная табличка с моим заказом с LCSC для большинства компонентов.
Плату делать необязательно, но с ней сборка схемы становится проще и аккуратнее. Файлы Gerber для производства платы я также выложил на GitHub. После того, как я получил готовую плату, я сделал несколько исправлений в схеме, поэтому дополнительные джамперы в новой схеме не нужны – хотя я её не проверял.
Корпус распечатан на 3D-принтере из пластика PLA, их можно скачать здесь. Я подправил CAD-файлы, добавив отверстия для крепления новой платы. Всё должно работать, хотя я это не проверял.
Шаг 3: код и интерфейс пользователя
Для создания интерфейса дисплея я использовал библиотеку Adafruit GFX. Код выложен на GitHub.
Главная страница интерфейса показывает текущую дозу, количество срабатываний в минуту и общую накопленную дозу с момента включения устройства. Пользователь может переключаться между быстрым и медленным суммированием, меняя интервал подсчёта промежуточных сумм с 3 до 60 секунд. Пищалку и светодиод можно включать и выключать отдельно.
Есть меню базовых настроек, позволяющее пользователю менять единицы измерения дозы, порог предупреждения и фактор калибровки, соотносящий количество срабатываний в минуту и мощность дозы излучения. Все настройки сохраняются в EEPROM, и восстанавливаются после перезапуска.
Шаг 4: проверка и заключение
Счётчик Гейгера срабатывает 15-30 раз в минуту от естественного фонового излучения, чего и следует ожидать от трубки SBM-20. Небольшой образец урановой руды регистрируется как средне радиоактивный, в районе 400 щелчков в минуту, а ториевая лампа может заставить счётчик регистрировать по 5000 щелчков в минуту, если держать его вплотную к ней!
Счётчик потребляет 180 мА при 3,7 В, поэтому батарейки на 2000 мАч должно хватить примерно на 11 часов.
Я планирую точно откалибровать трубку на стандартном источнике из цезия-137, что сделает показания более точными. В качестве будущих улучшений можно добавить поддержку WiFi и запись данных, поскольку у ESP8266 есть встроенный WiFi.
Надеюсь, мой проект показался вам интересным!