Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сетевой выпрямитель стабилизатор напряжения тока

Выпрямитель и стабилизаторы напряжения

На рис. 85 приведены схемы двухполупериодного выпрямителя, параметрического и компенсационного стабилизаторов напряжения, которые можно использовать для питания различной транзисторной аппаратуры как раздельно, так и совместно.

Двухполупериодный выпрямитель (рис. 85, а) образуют трансформатор Т1, понижающий напряжение сети до 12. 13 В, диоды VI — V4, включенные по мостовой схеме, и конденсатор С1, сглаживающий пульсации выпрямленного напряжения. Трансформатор первичной обмоткой I присоединяют к электроосветительной сети через плавкий предохранитель F1 на ток 0,5 А. Нагрузку или стабилизатор напряжения подключают к разъему X1, являющемуся выходом выпрямителя. Сила тока, потребляемого нагрузкой, может достигать 0,4. 0,5 А при значительных пульсациях выпрямленного напряжения.

Параметрический стабилизатор (рис. 85, б) состоит из резистора R1 и стабилитрона V5. Его вход подключают к выходу выпрямителя через разъем Х2, а нагрузку к выходу стабилизатора через разъем ХЗ. Выходное напряжение 9 В (зависит от напряжения стабилизации используемого стабилитрона), максимальный ток нагрузки — 15. 20 мА.

Компенсационный стабилизатор (рис. 85, в) входным разъемом Х4 подсоединяют к выходу выпрямителя, а стабилизированное напряжение питания нагрузки снимают с выходного разъема Х5. Транзистор V6 — регулирующий элемент стабилизатора. Постоянное напряжение на его базу подается с параметрического стабилизатора R2V5. Балластный резистор R3 поддерживает рабочий режим регулирующего транзистора при отключенной нагрузке. Максимальный ток, потребляемый нагрузкой, может составлять 200 мА. Коэффициент стабилизации выходного напряжения около 30, выходное сопротивление не более 2 Ом.

Возможные конструкции выпрямителя и стабилизаторов напряжения (Разработаны В. Васильевым г. Москва), показаны на рис. 86. Стабилизаторы выполнены в виде сменных приставок к выпрямителю.

Рис. 85. Схемы выпрямителя и стабилизаторов напряжения блока питания транзисторной аппаратуры

Рис. 86. Конструкции выпрямителя и стабилизаторов напряжения

Сетевой трансформатор 77 выпрямителя — ТВК-110ЛМ (его данные приведены в табл. 7 приложения). Фильтрующий конденсатор С1 составлен из двух, соединенных параллельно конденсаторов типа К50-3Б емкостью по 500 мкФ, на номинальное напряжение 25 В (можно использовать конденсатор К50-6 емкостью 1000 мкФ на такое же номинальное напряжение). Трансформатор, диоды выпрямительного моста и фильтрующий конденсатор размещены и смонтированы на панели из листового изоляционного материала (гетинакс, стеклотекстолит), размеры которой определяются габаритами деталей. С помощью металлических уголков панель крепится к боковым стенкам — стойкам. Функцию выходного разъема выпрямителя выполняют два гнезда на передней стенке. Держатель плавкого предохранителя находится на задней стенке, через которую выведен и сетевой шнур с двухполюсной вилкой на конце.

При правильном монтаже деталей выпрямитель налаживать не придется. Надо только измерить напряжение на его выходе при различных нагрузках. При подключении эквивалента нагрузки сопротивлением 30. 40 Ом (проволочный резистор) потребляемый ток должен быть в пределах 0,5. 0,6 А при напряжении 15. 17 В. Увеличить потребляемый ток до 1,2. 1,4 А можно заменой диодов Д226 выпрямительного моста на более мощные диоды серии Д229.

Параметрический стабилизатор напряжения выполнен в виде переходной колодки, которую входными штепсельными вилками Х2 подключают к выходным гнездам выпрямителя X/, а нагрузку — к ее выходным гнездам ХЗ. Колодка состоит из двух планок, скрепленных между собой с помощью металлических полосок, согнутых наподобие буквы П. Задняя планка, на которой укреплены входные вилки, должна быть из изоляционного материала (гетинакс, текстолит). Передняя планка металлическая, но выходные гнезда должны быть изолированы от нее. Стабилитрон и гасящий резистор выводами припаяны непосредственно к соответствующим гнездам и вилкам.

Чтобы не ошибиться при подключении стабилизатора к выпрямителю, возле вилок и гнезд приставки необходимо пометить полярность напряжения.
Компенсационный стабилизатор напряжения также выполнен в виде переходной колодки, состоящей из передней металлической панели с выходными гнездами Х5 и задней планки с входными вилками Х49 которыми стабилизатор подключают к выходу выпрямителя XL Панель и планка скреплены между собой такими же, как в параметрическом стабилизаторе, металлическими уголками.

Передняя панель — пластина размерами 70 х 50 мм из листового дюралюминия (или алюминия) толщиной 3 мм, она выполняет функцию теплоотводящего радиатора регулирующего транзистора V6. Стабилитрон V5, гасящий и балластный резисторы R2 и R3 смонтированы на контактах входного и выходного разъемов.
Безошибочно смонтированный компенсационный стабилизатор налаживания не требует. Его выходные параметры можно проверить, подключая к нему эквиваленты нагрузок разных сопротивлений.

В любом из описанных здесь стабилизаторов можно использовать маломощный стабилитрон с иным напряжением стабилизации. Соответственно изменится и выходное стабилизированное напряжение. Несколько таких приставок-стабилизаторов с разными выходными напряжениями позволят питать от одного и того же выпрямителя разные по сложности радиотехнические устройства и приборы, конструируемые в кружке.

При изготовлении стабилизаторов по приведенным схемам следует учитывать, что нельзя заранее предугадать, какие точно получатся напряжения на их выходах. Объясняется это разбросом параметров стабилитронов одной и той же серии. Например, напряжение стабилизации стабилитрона Д814Б, наиболее часто используемого радиолюбителями для сетевых блоков питания, может быть 8. 9,5 В. Примерно в таких же пределах может быть и выходное напряжение стабилизатора. Чтобы это напряжение было вполне определенного значения, например 9 В, приходится опытным путем подбирать соответствующий стабилитрон. Для питания любительской аппаратуры это необязательно, потому что подобный разброс значений выходного напряжения не имеет практического значения.
При использовании сконструированных стабилизаторов кружковцы должны помнить, что стабилитрон параметрического стабилизатора или регулирующий транзистор компенсационного стабилизатора из-за длительных перегрузок или коротких замыканий в цепях питающейся нагрузки могут перегреться и выйти из строя.

Читайте так же:
Как работает стабилизатор переменного тока

Поэтому перед подключением к сетевым блокам питания любого радиотехнического устройства надо убедиться, что замыканий в нем нет, а сразу же после подключения измерить потребляемый ток — он не должен быть больше допустимого.
Можно усложнить стабилизатор , включив в него защитное устройство от перегрузок. Подобный стабилизатор, схема которого приведена на рис. 87, с двумя фиксированными выходными напряжениями: при включении стабилитрона Д810 (V2) напряжение на входе стабилизатора будет 9 В, при включении стабилитрона Д814Д (V3) — 12 В. Резистор R1 и подсоединенный к нему (переключателем S2) стабилитрон образуют параметрический стабилизатор, создающий на базе управляющего транзистора V4 (относительно минусового проводника) положительное напряжение, соответствующее напряжению стабилизации включенного стабилитрона. Коллекторной нагрузкой этого транзистор; служит эмнттерный переход регулирующего транзистора V5. Нагрузка, подключенная к выходу стабилизатора, оказывается включенной в коллекторную цепь регулирующего транзистора. Диодь V6 и V7 — элементы защиты от перегрузок.

Рис. 87. Схема стабилизатора напряжения с двумя фиксированными выходными напряжениями и защитой от перегрузок

Пока ток нагрузки не превышает 250. 300 мА, диод V7 открыт и образует с резистором R3 делитель напряжения, обусловливающего момент срабатывания защиты. Диод V6 в это время закрыт и не влияет на работу стабилизатора.
При коротком замыкании или чрезмерно большом потребляемом токе анодный вывод диода V7 оказывается соединенным с минусовым проводником через малое сопротивление нагрузки и диод закрывается. Диод же V6, наоборот, в это время открывается и шунтирует включенный стабилитрон. При этом оба транзистора закрываются и ток во внешней цепи падает до 20. 30 мА.

Регулирующий транзистор V5 (П213, П214, П217) должен быть с теплоотводящим радиатором. Транзистор КТ315 можно заменить кремниевыми п-р-п транзисторами КТ301, КТ312, МП111 — МП111З с коэффициентом передачи тока 40. 50, а диод Д223 —диодами Д20, Д206, Д226 с любыми буквенными индексами.

Налаживают этот стабилизатор так. К зажимам XI и Х2 подключают вольтметр постоянного тока и последовательно соединенные проволочный переменный резистор (он имитирует нагрузку) сопротивлением 400. 500 Ом и миллиамперметр на ток 500 мА. Движок резистора устанавливают в положение наибольшего введенного сопротивления и подключают вход стабилизатора к выходу выпрямителя. Вольтметр должен показывать напряжение, соответствующее включенному стабилитрону, а миллиамперметр — ток, не превышающий 30 мА.
С уменьшением сопротивления переменного резистора ток через нагрузку должен увеличиваться, а напряжение на нем оставаться практически неизменным. При замыкании выводов переменного резистора должно резко уменьшиться выходное напряжение!— почти до нуля — и ток через нагрузку — до 20. 30 мА.

После наладки стабилизатора надо подобрать резистор R3 такого сопротивления, чтобы система защиты срабатывала при токе нагрузки 250. 300 мА.

  • 85
  • 1
  • 2
  • 3
  • 4
  • 5

В.Г. Борисов. Кружок радиотехнического конструирования

Выпрямители (Часть 1). Виды и устройство. Структура и особенности

Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.

Устройство и структура выпрямителя

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя. Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей. Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Рис. 1

Выпрямители в общем виде можно изобразить структурной схемой (Рис. 2), в которую входит:

1 — Силовой трансформатор.
2 — Диодный мост, состоящий из диодов.
3 — Устройство фильтрования.
4 — Нагрузочная цепь со стабилизатором.

Рис. 2

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства (Рис. 1 — а). Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста Uн.

Читайте так же:
Стабилизатор частоты вращения двигателя током

Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iн одновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.

Диодный мост

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный (Рис. 1 — б). В блоке применяются чаще всего элементы в виде диодов.

На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки (Рис. 1 — в). В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Стабилизатор напряжения

Устройство стабилизации напряжения предназначено для снижения внешнего влияния на выходное напряжение. Воздействиями могут быть: изменение частоты тока, температуры, перепады напряжения и другие факторы. В конструкции стабилизатора используются полупроводниковые элементы в виде стабилитронов, тиристоров, симисторов и других полупроводников, устройство и работа которых будет рассмотрена отдельно.

Классификация

Выпрямители, выполненные на основе полупроводниковых элементов, классифицируются по различным признакам.

По мощности на выходе:
  • Повышенной мощности – свыше 100 киловатт.
  • Средней мощности – менее 100 кВт.
  • Малой мощности – до 0,6 киловатт.
По фазности сети питания:
  • 1-фазные.
  • 3-фазные.
По количеству импульсов одного полюса выпрямленного напряжения U2 за один период:
  • Однотактные (имеют один полупериод).
  • Двухтактные (два полупериода).
По типу управления вентилями выпрямители делятся на:
  • Управляемые. В схеме применяются транзисторы, тиристоры.
  • Неуправляемые. Используются диоды.
Выпрямители разделяют для следующих видов нагрузки:
  • Активно-емкостная.
  • Активно-индуктивная.
  • Активная.
Расчет выпрямителя

Характер нагрузки, формы потребления тока влияют на способы расчета выпрямителя, и значительно отличаются. Расчет выпрямителя выполняется путем подбора схемы выпрямителя, вида вентилей, определения нагрузки на трансформатор, фильтр и диоды, энергетических и электрических параметров.

Ряд факторов влияет на выбор схемы прибора. Эти факторы необходимо учитывать согласно предъявляемому требованию к выпрямителю.

К таким факторам можно отнести:
  • Мощность и напряжение.
  • Пульсация и частота напряжения на выходе.
  • Значение обратного напряжения на диодах и их количество.
  • Коэффициент мощности и другие параметры.
  • КПД.

Коэффициент применения трансформатора по мощности оказывает большое влияние на расчет выпрямителя. Этот параметр вычисляется формулой:

Где Id, Ud, — средние величина выпрямленного тока и напряжения, I1, U1 — рабочая первичная величина тока и напряжения, I2, U2 – рабочая величина вторичного тока и напряжения.

При повышении коэффициента использования трансформатора размеры прибора в общем уменьшаются, а КПД увеличивается.

Схемы выпрямления
Однофазные выпрямители

Схемы приборов для подключения к питанию однофазной сети используются чаще всего для бытовых электрических устройств. В них применяются однофазные трансформаторы, функционирующие с фазой и нолем. Обе обмотки трансформатора таких приборов являются однофазными.

Однофазная однотактная схема

Однополупериодная схема чаще всего используют для выравнивания токов малой мощности (несколько миллиампер), когда нет необходимости идеального выравнивания напряжения на выходе выпрямителя. Такая схема характерна значительными пульсациями выходного напряжения и малым коэффициентом использования трансформатора.

На диаграмме видна работа однотактного выпрямителя на активную нагрузку.

Нагрузочный ток id под воздействием ЭДС вторичной обмотки (е2) может пройти только за те полупериоды, на которых анод диода обладает положительным потенциалом по отношению к катоду. По диоду в первый полупериод протекает ток ivd, а во второй полупериод ток становится нулевым (при отрицательном потенциале анода).

Напряжение на выходе выпрямителя ud всегда ниже ЭДС обмотки е2, из-за того, что определенная часть напряжения теряется. Наибольшее обратное сопротивление вентиля Uобрmax достигает амплитудной величины ЭДС вторичной обмотки.

Диаграммы токов обеих обмоток трансформатора аналогичны, если не считать ток намагничивания и удалить из него величину Id, так как она не трансформируется в первичную обмотку. Из-за этой величины в сердечнике трансформатора образуется вспомогательный магнитный поток, который насыщает сердечник.

Такой эффект называется вынужденным подмагничиванием. Это можно выделить, как основной недостаток схемы. После насыщения ток намагничивания трансформатора повышается по сравнению с нормальным режимом. Повышение этого тока создает условия для увеличения сечения проводника первичной обмотки. Вследствие этого возрастают размеры трансформатора.

Читайте так же:
Стабилизатор тока повышенной мощности

Критерии выбора выпрямителя напряжения для дома

Ненадлежащее качество работы электросетей пагубно влияет на всю без исключения бытовую технику и энергозависимое оборудование. Причем, эта ситуация знакома как жителям отдаленных поселков, так и крупных мегаполисов. Для защиты самых различных приборов от скачков в сети и преобразования переменного тока в постоянный используется специальное оборудование, такое как выпрямитель-стабилизатор напряжения.

Это устройство с успехом применяется как в квартирах, так и на производстве, при условии соответствия поставленной перед ним задачи. Рассмотрим на какие характеристики прибора следует обращать внимание при его выборе, чтобы защитить бытовую технику от колебаний напряжения в сети.

  1. Конструкция и принцип работы
  2. Виды приборов и их особенности
  3. Аспекты подбора оборудования
  4. Обзор популярной продукции
  5. Совет специалиста

Устройство выпрямителя

Не все оборудование может работать на переменном токе. Для их подключения к сети приходится использовать выпрямители-стабилизаторы напряжения. Они предназначены для создания в нагрузке постоянного тока. Основу такого прибора составляет схема, содержащая диод или вентиль, который может быть, как управляемым, так и не управляемым. В зависимости от используемых элементов различают следующие виды:

  • Механический;
  • Вакуумный;
  • Электронный.

Их главным назначением является преобразование тока. Однако большинство моделей создают пульсации сглаживание которых осуществляют фильтры.

Принцип работы оборудования

В основу функционирования таких приборов положено свойство диода пропускать ток в одном направлении. Это происходит следующим образом. При прохождении через диод синусоидальной волны ее отрицательная составляющая гасится, а положительная пропускается в схему. Отсюда ток на выходе получил название однополупериодного пульсирующего.

Классификация приборов

Оборудование, предназначенное для преобразования тока, подразделяется в зависимости от различных факторов. По числу выпрямляемых фаз различают следующие виды приборов:

  1. Одно;
  2. Трех;
  3. Многофазные.

Первый тип устройств используется в бытовой технике, зарядных устройствах мобильных гаджетов. Трехфазные выпрямители предназначены для электротранспорта и промышленных установок.

Смотрим видео, устройство, виды и принцип работы:

Устройства обоих типов могут быть мостовыми, имеющими схему «моста». Они наиболее часто используются для выпрямления переменного тока при этом имеют минимальные пульсации и лучшее качество постоянного. Мостовые схемы обычно применяют в приборах предназначенных для питания сварочных аппаратов.

Кроме рассмотренного выше параметра классификация выпрямителей осуществляется по таким признакам, как:

  • Использование периодов (одно-, двухполупериодные, неполно-, полноволновые);
  • Схема работы (умножающие, трансформаторные);
  • Тип электронного вентиля (диод, тиристор, полупроводниковый, механический);
  • Вид сигнала (цифровой, аналоговый, импульсный).

До недавнего времени в качестве вентилей использовали ртутные выпрямители, но сегодня их заменили полупроводниковые кремниевые. В некоторых моделях применяют тиристоры.

Схема однополупериодного выпрямителя напряжения 12 В состоит из двух диодов и на ее основе собирается двухполупериодный. Он включает в себя два таких прибора, которые включены встречно-параллельно.

Критерии выбора выпрямителей

Приобретая сложное техническое устройство ориентируются на его основные характеристики. Для выпрямителя к таким относятся:

  • Номинальное напряжение;
  • Выпрямленный ток;
  • Частота пульсаций.

Первый параметр обычно указывается двумя переменными. Одна – это напряжение до фильтра, вторая – после него.

Номинальный выпрямленный ток — это среднее значение. Он задается техническими условиями.

Необходимо обращать внимание и на напряжение сети. Для бытовых приборов оно должно составлять 220В с отклонением в любую сторону не более 10%.

Качественным показателем каждого сетевого выпрямителя-стабилизатора напряжения и тока является пульсация. В зависимости от схемы устройства частота гармоники выходных параметров должна быть равна аналогичной величине питающей сети для однопериодных и удвоенному значению ее для двухполупериодных приборов.

Что касается многофазных выпрямителей, то у них этот параметр зависит от схемы и числа фаз.

Важными характеристиками таких приборов являются коэффициенты:

  1. Фильтрации;
  2. Пульсаций.

Первый – это отношение коэффициента на входе к аналогичной величине на выходе. Второй определяется как соотношение амплитуды гармонической составляющей напряжения или тока к их среднему значению.

Смотрим видео, критерии выбора прибора:

Еще одним параметром, на который ориентируются, выбирая выпрямитель, является нестабильность или колебания напряжения на его выходе. Этот параметр определяется как разница между реальным и номинальным значениями. Если же прибор используется без стабилизатора, то колебания определяются по отклонения напряжения в сети.

Обзор нескольких моделей

Оборудование этого класса выпускается различными производителями и представлено достаточно широко на отечественном рынке. Но не все модели пользуются большим спросом. Одни из-за своей высокой стоимости, вторые по причине низкого качества. Поэтому прежде, чем купить выпрямитель для дома следует внимательно изучить техническую документацию на различные виды устройств, а также ознакомиться с отзывами в сети. Часто в них можно найти много полезной информации. Не лишней будет и консультация со специалистом.

Чтобы несколько упростить выбор необходимого оборудования рассмотрим несколько самых популярных моделей выпрямителей для напряжения.

Одним из них является прибор PRS380. Он способен преобразовать синусоидальное входное напряжение переменного тока в выходное постоянного. Выпрямитель оснащен разъемам для установки в полку 19», которые располагаются на задней панели корпуса.

Читайте так же:
Что такое параметрический стабилизатор тока

Современная структура цепи прибора позволило свести потери к минимуму, получив компактное устройство небольшого веса. Сфера применения этого оборудования достаточно широка и рассчитана на все системы постоянного тока, как с аккумуляторами, так и без них.

Номинальная мощность прибора составляет 8000 Вт, а при необходимости ее повышения допускается параллельное подключение нескольких модулей.

Поскольку существуют выпрямители, которые не только устанавливаются на горизонтальных поверхностях, но и могут крепиться на стене, то стоит рассмотреть и такую модель.

Это прибор под маркой PSR06-W. Он оснащен дисплеем, установленным на передней панели и предназначенным для контроля значений напряжения и тока на выходе. Устройство отличается компактными размерами и предназначено для монтажа на стену.

При его создании были учтены современные технологии, поэтому прибор отличается широким диапазоном входного напряжения, позволяя получать синусоидальный ток с коэффициентов мощности равным 1.

Выпрямитель оснащен платой контроля и коррекции величин на входе и выполняет их настройку в течение 1,5 мс. Эта особенность позволяет устройству поддерживать заданное значение тока практически до КЗ. При этом настройка выполняется с использованием клавиш, расположенных на лицевой части корпуса. Допускается подключение температурного датчика для компенсации этого параметра при зарядке аккумулятора.

Что советуют специалисты

Выбирая данный прибор, обращают внимание не только на технические характеристики прибора, но и на его стоимость. Какую модель купить? Дешевую? Дорогую? Эти вопросы актуальны для всех. Но какие ответы на них дают специалисты?

Они отмечают, что выбор выпрямителя должен основываться на задачах, которые ему придется решать, а также особенностях конкретной сети. В некоторых случаях можно обойтись самой простой и недорогой моделью. Но для подключения сложного оборудования понадобиться более дорогое устройство.

Простые выпрямители, фильтры, стабилизаторы

Источники питания были и остаются важнейшей и незаменимой составляющей любой радиоэлектронной схемы. Для обеспечения схем необходимыми напряжениями используют либо автономные источники питания — батареи, аккумуляторы, либо, при питании радиоаппаратуры от сети переменного тока, — сетевые источники. Для того, чтобы понизить напряжение сети с 220 В до приемлемых для питания транзисторных схем значений и обеспечить надежную защиту пользователя от поражения электрическим током, используют понижающий трансформатор (рис. 35.1, 35.16). В исключительно редких случаях используют бестрансформаторные питающие устройства, однако в этом случае все управляющие элементы устройства (ручки, выключатели и пр.) и корпус должны быть надежно изолированы от сети. При пользовании такими устройствами необходимо строжайшее соблюдение правил техники безопасности!

Ниже будут рассмотрены основные варианты схем питания радиоэлектронной аппаратуры.

Простейший выпрямитель — преобразователь переменного тока в постоянный — показан на рис. 35.1, 35.6. К вторичной (понижающей) обмотке трансформатора подключен один полупроводниковый диод VD1. Этот диод пропускает только одну полуволну переменного напряжения (однополупериодное выпрямление), поэтому для сглаживания пульсаций тока на выходе выпрямителя необходимо включать электролитический конденсатор С1 большой емкости. Параллельно ему подключается сопротивление нагрузки. Недостатки такого выпрямителя очевидны: повышенные пульсации выпрямленного напряжения, невысокий КПД. Величина пульсаций будет тем выше, чем меньше емкость сглаживающего пульсации напряжения конденсатора С1 и чем меньше величина сопротивления нагрузки. Величина выходного напряжения такого выпрямителя при работе без нагрузки составляет 1 ,41xUab.

На рис. 35.2 показана схема простейшего выпрямителя — формирователя двуполярного выходного напряжения. Коэффициент полезного действия такого выпрямителя выше, а все приводимые ранее рассуждения полностью распространяются и на эту схему.

Мостовая схема выпрямителя содержит четыре диода и представлена на рис. 35.3. Такая схема подключается к источнику переменного тока, например, к точкам А и В разделительного трансформатора (рис. 35.1). Выпрямитель имеет более высокий КПД, токи в ветвях моста распределяются равномерно. Недостатком схемы являются удвоенные потери на последовательно включенных диодах выпрямителя (за счет «прямого» напряжения). Выходное напряжение мостовой схемы выпрямителя при работе без нагрузки также составляет 1,41 xUAB.

Для выпрямления и умножения выходного напряжения применяют схемы, показанные на рис. 35.4 и 35.5. Часто подобные схемы используют в преобразователях напряжения, в том числе бестрансформаторных, а также в схемах получения высокого напряжения (до десятков киловольт) в телевизионных приемниках, озонаторах, уловителях пыли.

В большинстве случаев выпрямленное напряжение надлежит тщательным образом отфильтровать от пульсаций сети переменного тока. При плохой фильтрации в динамиках будет слышна не радующая душу музыка или речь, а низкочастотный гул или рокот, так называемый «фон» переменного тока. Чем выше качество питающего напряжения, тем лучше будет работать радиоаппаратура. Нефильтрованное питание допустимо использовать лишь для электродвигателей постоянного тока, осветительных и нагревательных приборов.

Для сглаживания выходного напряжения выпрямителей предназначены LC- и RC-фильтры. Простейший из них (L=0, R=0) — емкостный — показан на рис. 35.1 и 35.6. Схема эта, действительно, крайне проста. Однако увеличивать до бесконечности емкость фильтрующего конденсатора невозможно: растут габариты и стоимость конденсатора, снижается надежность устройства в целом. Существует опасность того, что в момент включения устройства в сеть произойдет повреждение диода VD1 либо обмотки трансформатора: ведь незаряженный конденсатор представляет в момент включения короткозамкнутыи элемент. Через обмотку трансформатора и диод в этот момент протекает ток короткого замыкания, многократно превышающий допустимые значения и вызывающий их повреждение.

Читайте так же:
Стабилизатор тока для мотоцикла

Для уменьшения переменной составляющей на выходе выпрямителя используют индуктивные (дроссельные) и резистив-но-емкостные Г- и П-образные фильтры (рис. 35.7 — 35.9), а также их последовательное соединение. Напомним, если активное сопротивление (резистор) представляет собой одинаковое сопротивление как для постоянного, так и для переменного тока, то конденсатор для постоянного тока является разрывом цепи, а для переменного тока, в идеале, служит коротким замыканием (см. также главу 3). В свою очередь, индуктивность (дроссель), также в идеале, представляет собой бесконечно малое сопротивление постоянному току и бесконечно большое сопротивление переменному току. Следовательно, использование в качестве элемента фильтра дросселей вместо резисторов предпочтительнее. Однако дроссели имеют значительные габариты, массу и цену, являются более дефицитными и менее надежными элементами по сравнению с обычными резисторами.

В радиоаппаратуре используют и транзисторные фильтры (рис. 35.10). Радиолюбителю предлагается самостоятельно испытать и сравнить различные виды выпрямителей и фильтров при разных параметрах входящих в них элементов. Для контроля «качества» выходного напряжения может быть использован УНЧ или осциллограф, на вход которых через разделительный конденсатор подается выпрямленное напряжение. Питание усилитель должен получать от батарей (аккумулятора) либо от иного источника питания с хорошей фильтрацией выходного напряжения. В качестве простейшего тестера качества фильтрации можно использовать и телефонный капсюль, также подключаемый к выходу выпрямителя или фильтра через разделительный конденсатор.

Далее будут рассмотрены простые стабилизаторы тока (рис. 35.11 — 35.15) и напряжения (рис. 35.16 — 35.20). Схемы стабилизации тока зачастую используют в генераторах импульсов для заряда постоянным током времязадающих конденсаторов, а также в измерительной технике, например, при измерении сопротивлений. На рис. 35.11 и 35.12 показаны схемы стабилизаторов тока [МК 5/86-XVI], При увеличении напряжения на таком двухполюснике (рис. 35.11) происходит самоограничение тока через него. Величину резисторов R1 и R2 можно определить как:

На рис. 35.12 и 35.13 представлены другие схемы ограничения и стабилизации тока. При возрастании тока через датчик тока R2 (рис. 35.12) или R1 и включенный ему параллельно потенциометр R3 (рис. 35.13) [F 1/76-21] уменьшается смещение на базе транзистора VT2 (рис. 35.12) или VT1 (рис. 35.13), соответственно. Транзисторы плавно, пропорционально протекающему через резисторы току, запираются, и ток стабилизируется. В определенных пределах ток ограничения (рис. 35.13) плавно регулируется потенциометром R3.

На рис. 35.14 показана схема стабилизатора тока на основе полевого транзистора. При увеличении тока через резистор R1 меняется смещение на управляющем (3 — И) переходе транзистора, он плавно запирается, ограничивая ток нагрузки.

Стабилизатор тока на основе микросхемы, в состав которой входит несколько десятков элементов (рис. 35.15), может обеспечить широкий диапазон токов нагрузки [Дж. Уитсон]. Популярная микросхема стабилизатора напряжения может стабилизировать еще и ток. Величина стабилизируемого тока в нагрузке рассчиты вается следующим образом: lH=(UBb|X/R1)+10 мА, где lH — в мА 11вых — в В; R1 — в кОм.

На рис. 35.16 представлена схема несложного стабилизированного источника питания. Он содержит понижающий трансформатор, мостовой выпрямитель, конденсаторный фильтр и полупроводниковый стабилизатор напряжения. Схема стабилизатора напряжения позволяет плавно регулировать выходное напряжение в пределах от 0 до 12 В и защищена от коротких замыканий на выходе. Для питания низковольтного паяльника, а также для экспериментов с переменным электрическим током предусмотрена дополнительная обмотка трансформатора. Имеется индикация постоянного напряжения (светодиод HL2) и переменного (светодиод HL1). Для включения всего устройства используется тумблер SA1, а паяльника — SA2. Нагрузку отключает SA3. Для защиты цепей переменного тока от перегрузок предусмотрены предохранители FU1 и FU2. На ручке регулятора выходного напряжения (потенциометр R4) нанесены значения выходных напряжений.

На рис. 35.17 показан фрагмент схемы модифицированного стабилизатора (рис. 35.16) с индикацией короткого замыкания в нагрузке. В нормальном режиме светится зеленый светодиод, при замыкании нагрузки — красный.

Очень простой и высококачественный стабилизатор на специализированной микросхеме серии К142ЕН изображен на рис. 35.18. Транзисторные стабилизаторы показаны на рис. 35.19 и 35.20 [Р 4/81-61]. При значительных токах нагрузки транзистор VT4 (рис. 35.20) следует закрепить на теплоотводящей пластине из цветного металла.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

голоса
Рейтинг статьи
Ссылка на основную публикацию