Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема питания трехфазного счетчика

Схема питания трехфазного счетчика

Блок питания для одно- и трехфазной сети с широким диапазоном входных напряжений на LNK304

Автор: KomSoft, kom_soft@ukr.net
Опубликовано 09.07.2015
Создано при помощи КотоРед.

Введение.

Для питания маломощной аппаратуры, не требующей гальванической развязки, от сети переменного тока 220В часто применяются бестрансформаторные источники питания с гасящим конденсатором. Их преимущество — простота, минимум деталей и отсутствие моточных изделий (трансформаторов). Недостатки — малый ток, низкий КПД и нестабильность выходного напряжения и тока нагрузки. Пример такого блока показан на рисунке.

Рис. Типовая схема бестрансформаторного источника питания с гасящим конденсатором

Тем не менее они достаточно широко находят применение даже в заводских устройствах. Я вдоволь намучался с реле напряжения РН-40, которое начало чудить после двух лет работы, причина — блок питания, выполненый по варианту а). В более продвинутом РН-40А блок собран уже по варианту б). Затем как приличный кот из семьи радиолюбителей для себя, любимого, я собрал аналогичное устройство на МК — «Устройство защиты от критических изменений сети 220 Вольт» [1], но блок питания сделал уже по варианту б). Затем был собран»Трехканальный вольтметр на контроллере от Eddy71″ [2] с запиткой от одной фазы. При установке в трехфазную розетку конденсаторный блок питания с питанием от одной фазы вызывал срабатывание УЗО. Запитка от трех фаз потребовала бы трех габаритных конденсаторов типа 1мкФ*630В и кучи диодов, т.к. для нормальной работы конденсатору нужен двухполупериодный выпрямитель. Опять чувство неудовлетворенности осталось.

Тут в городскую квартиру пришла беда — 380В, а все эти реле напряжения стоят на даче. Чтобы не воевать с ЖЭКом, купил заводские DigiTOP V-protector. Заявленое индицируемое (а значит и рабочее) напряжение 50-400В. Почему-то в интернет читать про них полез уже после покупки и был непрятно удивлен — там также стоит источник питания с гасящим конденсатором [3], выполненый судя по всему по варианту б), хотя я ожидал чего-то более серьезного.

На форумах прозвучала очень разумная фраза о том, что все устройства защиты должны выдерживать максимальное напряжение, чтобы на сгореть самим, а после возврата напряжения в норму снова включить нагрузку. А моя возня с конденсаторными блоками очень сильно уронила уровень доверия к ним.

Теоретическая часть.

Итак, нужен относительно простой, недорогой, компактный блок питания с выходным током до 100-150мА. Блок будет применяться в приборах с изолированым корпусом, не требующих частого контакта с человеком — типа щитовых вольтметров, реле напряжений и аналогичных устройств. (Для устройств, требующих гальваниченкую развязку или больший ток будем применять трансформаторные / импульсные блоки). Современная элементная база предлагает нам серию микросхем LinkSwitch-TN LNK304-306, но у них заявленый диапазон входных напряжений — 85-265VAC. Применение их в источниках питания описано, например в «Недорогой вариант импульсного источника питания для электросчетчика» [4], там же приводится сравнение с конденсаторными блоками.

А нам нужен блок питания со входным напряжением 40-400VAC!

Заинтересовала статья «Устройство защиты от перенапряжения 220В» [5], но два конденсатора по 3,3мкФ*450В это многовато по объему, да и сама входная часть вызвала вопросы, ответов на которые чтение форумов не дало. Первичный поиск радиолюбительских конструкций (т.е. собраных дома своими руками) также ничего не дал.

К счастью, на помощь пришли производители микросхем для источников питания. Более глубокий поиск дал Design Example Report, а именно — технологиию StackFET (добавление последовательно с ключом микросхемы внешнего МОП-транзистора). Статья называется «3 W Wide Range Flyback Power Supply using LNK304P» [6], и она же на русском — «Разработка источника питания с широким диапазоном входного напряжения для промышленной трехфазной сети» [7]. Заявлены параметры: Input: 57 VAC — 580 VAC; Output: 12 V, 250 mA.

Очень круто, но для моих применений слишком сложная (в том числе требует намотки трансформатора), хотя идея прекрасная и есть гальваническая развязка.

Дальнейшие изыскания показали другое решение — «Импульсные источники питания ST для однофазных и трехфазных счетчиков электроэнергии» [8] на VIPer17. Тут заявлено входное напряжение 90…440В, также есть гальваническая развязка (что снова требует намотки трансформатора), но зато для снижения прикладываемого к микросхеме напряжения применено более простое решение — линейный ограничитель-стабилизатор напряжения.

Чтобы избежать излишнего цитирования, выдержки из статей приводить не буду, но категорически советую почитать — познавательно и нужно для понимания вопроса.

Практическая часть.

И вот то, «ради чего все и писалось». Практическая схема бестрансформаторного импульсного блока питания от одно- и трехфазной сети с широким диапазоном входного напряжения.

Скомбинируем эти схемы. Преобразователь возьмем на LNK304 по стандартной схеме из даташита. Добавим к нему линейный ограничитель-стабилизатор напряжения, построенный на N-канальном транзисторе как в [8]. А вот выпрямитель сделаем однополупериодным, чтобы обеспечить прямое прохождение «нуля». Дело в том, что сборка [1] показала, что при отпускании реле (т.е. уменьшении потребляемого тока) измеренное напряжение подскакивает вольт на 10. Скорее всего это происходит из-за изменения падения напряжения на нижних диодах мостового выпрямителя.

Конечно, такая схема не обеспечит функционирование в случае пропадания нейтрали, но для правильности измерения так лучше. Для питания устройства, которое не требует прямой связи с «нулем», нужно использовать полноценную трехфазную четырехпроводную схему выпрямителя на двух мостиках, как в [6]-[8].

Читайте так же:
Класс точности электросчетчики трехфазные

Расчет программой PIXls Designer 9 для LinkSwitch-TN LNK304: при VACmin=85V, VACmax=265V, FL=50, topology — Buck,

Vout, V57
Iout, A0.08-0.150.08
Cin, mkF4.74.7
Output Inductor (MIN), mkHn311-610421
Rbias, kOm2.02.0
Cfb, mkF1010
Rfb, kOm3.846.13
Rfb, kOm, мой (при R3=2К)4.066.48

Расчет Rfb по стандартной формуле (для Vfb=1.65V) дает несколько другие результаты.

Плата разведена под конкретный корпус, поэтому сильно отличается от референсного дизайна, что не сказалось на работоспособности. От 220В (однофазного) запустилась сразу. При номиналах R3=2K, R1+R2=6K5 (4K7+1K8) выдает 6,7В на выходе (по расчетам — 7,01). Для проверки вначале нагружена на резистор 160 Ом (42мА), затем подключен вольтметр [2] с током потребления 36-40мА. С каждой из нагрузок по отдельности и с двумя нагрузками одновременно работает нормально.

Файл с платой не привожу, т.к схема очень простая (посмотрите как изящен референсный дизайн в даташите на LNK304) — развести под свои корпус и детали не составит труда.

Детали.

Все описано в даташите на микросхему [9]. «Любой стандартный дроссель подходит. Рекомендуется на гантельке». Дроссель L2 в целях экономии взят от БП АТХ, L1 — покупной, но я думаю, что при наличии L-метра можно и перемотать на гантельке. Конденсаторы C6-C7 пленочные на напряжение не менее 400В. C5 — на напряжение 400-450В, конденсатор C2 — LowESR, диод D1 обязательно UltraFast (UF4005), остальные диоды — дешевые медленные 1N4005-4007 (падение напряжения на D1 и D2 должно совпадать). Резисторы R1-R3 желательно (но не обязательно) прецезионные, т.к. есть возможность составить из двух. Транзистор Q1 — высоковольтный (2 Ом/600 В).

Испытания.

Испытания проводились на таком полигоне: выход ЛАТРа подключаем к половинке первичной обмотки (т.е. 110В) ТС-180. С полной первички (220В) снимаем напряжение на схему (вторичка ТС-180 не истпользуется). Т.е. ТС-180 включен как автотрансформатор с коэффициентом 1:2.

Выставляем на ЛАТРе 110В — на ТС-180 и входе схемы будет около 220В, на C5 — около 300В. Плавно повышаем, с какого-то момента (около 250-260В на входе блока) напряжение на конденсаторе на C5 застабилизировалось на 350В, что говорит о правильной работе линейного ограничителя-стабилизатора.

Затем подключаем блок напрямую к ЛАТРу и снижаем напряжение. У меня блок работал до напряжения на входе 60В, выдавая стабильное выходное 6.7В. Выход достаточно чистый, пульсации минимальные.

Таким образом диапазон входного напряжения составляет 60-400VAC! Что полностью меня устраивает.

Возможно, будет работать и при более высоком напряжении — не проверял. При более низком, как я понимаю будет зависеть от экземпляра LNK30х, т.к PIXls Designer 9 намекает, что минимальное входное постоянное напряжение должно быть более 70В. Кто сможет более квалифицировано протестировать этот блок — милости прошу!

Микросхемы LNK304-306 позволяют строить блоки с выходным током до 360мА, что недостижимо для источников с гасящим конденсатором, т.к там действует эмпирическая формула — 1мкФ гасящей емкости на 60мА выходного тока. Представьте себе для 360мА пленочный конденсатор 6мкФ*630В!

Да и КПД вместе с потребляемым от сети током впечатляет, даже с учетом возможной погрешности измерения тестером DT-5808

Vin, V Iпот, mA
конденсаторный блок блок на LNK304
100316.2
150464.3
220683.2
250783

Т.е. у блока на LNK304 потребляемая мощность практически неизменна (как и должно быть), а у конденсаторного — растет с повышением напряжения, т.к. излишки гасятся параллельным стабилизатором (на стабилитроне, транзисторе или тиристоре).

Единственным существенным недостатком является отсутствие гальванической развязки, но для устройств, полностью изолированых от корпуса, это непринципиально. А удорожание конструкции за счет приобретения микросхемы и транзистора полностью компенсируется огромным диапазоном входных напряжений, увеличенным выходным током и стабильным выходом.

Теперь понятие «бестрансформаторный источник питания с гасящим конденсатором» для меня больше не существует.

Внимание! Схема не имеет гальванической развязки с сетью, при тестировании и наладке будьте предельно осторожны!

А вот собственно и трехфазный вольтметр, для которого блок питания и собирался (да, такое вот напряжение на даче по фазам):

Как подключить трехфазный счетчик

Однофазный электрический счетчик — это обычный счетчик электроэнергии для квартир. Но к квартире подводится три фазы. И иногда бывает выгодно использовать фазы сразу все три. Только тогда надо уметь подключать и трехфазный счетчик

Счетчики все устроены похожим образом. Состоят из двух половинок. Одна половинка подводит к счетчику некоторую среду, а другая характеристики этой среды преобразует в показания. Среда обычно представляет поток чего-то, и то, что ее подводит, должно выдерживать определенные параметры.

Например, если это счетчик воды — значит подводящие трубки нужно подключать так, чтобы установка проводки была надежной и выдерживала давление, обладала некоторой герметичностью и т.д. Если газ, то примерно то же, но требования пожестче, при этом учитывается еще и пожароопасность среды — горючего газа. Когда мерить приходится электричество, то к счетчику подводится ток и напряжение. Значит и внешние, и внутренние провода должны быть проложены с расчетом на параметры токов и напряжений, которые измеряются. С соответствующей им проводимостью контактов и надежностью изоляции.

Читайте так же:
Счетчик электроэнергии нева 103 1so схема подключения

Вторая половина для всех счетчиков (и для электрических в том числе), смешно сказать, была с давних пор механической или механической с магнитодинамической (индукционной) начинкой. Крыльчатки, колесики, а в конце — табло или циферблат с механически передвигавшимися цифрами. Так было установлено еще с XIX века, пока не появилась цифровая техника. А с нею и новые возможности.

Разновидности электросчетчиков

В зависимости от среды, где производятся измерения, электросчетчики бывают однофазные и трехфазные. А по типу подсоединения — включаемые прямо или косвенно.

Электроэнергия к нам в квартиру доводится со стандартными параметрами, такими, чтобы можно было эффективно питать энергией всю электропотребляющую бытовую технику и при этом сеть была относительно безопасной. Это 220 В переменного тока частотой 50Гц. Трехфазное напряжение, из которого выбирается для квартиры одна фаза, перепадом между фазами достигает 380 В.

Когда стоит задача измерить электроэнергию мощностью в миллионы ватт, текущую по линиям в тысячи километров, или у генерирующих установок в электростанциях, ТЭЦ, ГЭС, АЭС, то счетчики подключаются косвенно. На каждую фазу на магистральных проводах ставятся обмотки, от них индукционное напряжение отводится к счетчикам, где замеряется напряжение и ток — и полученная мощность и есть результат измерений. Такое подключение — когда первичной обмоткой является сам магистральный провод, а вторичная, не имея (как и в любом трансформаторе) электрического контакта с магистральным проводом, подает индуцированное напряжение на счетчик, — называется трансформаторным или косвенным.

Квартирные электросчетчики включаются прямо. То есть провода сети подключаются к контактам счетчика, далее напряжение внутри счетчика подается на обмотки, замеряющие напряжение и ток, что дает в результате мощность. Эта мощность суммируется (в старых счетчиках механически крутится колесико со скоростью, пропорциональной мощности, и механизм, подобный часовому, вращает диски табло, показывая число киловатт-часов энергии, потребленной в квартире). Далее из счетчика провода — фазный (или фазные) и нулевой — выходят на внешние контакты. После чего делается разводка по сети питания квартиры.

Схема подключения трехфазного счетчика

К этажным щиткам подводятся три фазы электроэнергии. Мы привыкли, что квартиры запитываются одной фазой. Поэтому и электросчетчик тоже обычно однофазный.

Простая однофазная схема

Эта схема, хоть на ней и нарисован однофазный старый счетчик, показывает вид его установки, который для однофазной сети в квартире, в принципе, и не изменился. Только мы видим (и знаем), что к квартире подходят три фазы, хотя мы берем одну. А ведь можно запитать квартиру сразу всеми тремя фазами.

Подключение трехфазного счетчика: преимущества питания на 380 В

Можно ввести в квартиру три фазы и поставить на них отдельные однофазные счетчики.

Но вместе они дороже одного трехфазного, и один устанавливается проще, когда знаешь, как правильно подключить.

  1. Мощные электроприборы работают на трехфазном токе. Лучше всего подать им их родное напряжение.
  2. В однофазной сети потребления есть зависимость от колебаний внешнего напряжения в отдельных фазах. Трехфазное напряжение дает возможность выравнивать потребление в фазах, переключая своих потребителей на менее нагруженные фазы.
  3. Собственные потребляющие электроприборы, собранные на одной фазе, могут вызвать локальный перекос фаз, что плохо для общедомовой сети.
  4. Общее потребление в трехфазной сети меньше, чем в однофазной, для тех же устройств-потребителей.

При напряжении в 380 вольт по закону Ома ток меньше, отсюда меньше потери в проводах, и тем же сечением проводов можно питать большую, чем при 220 В, электрическую мощность.

Трехфазная сеть: моменты внимания

Сложности трехфазной сети обычно существуют на этапах монтажа или во время каких-то работ по изменению сети.

Монтаж по схеме счетчика прямого включения

Схема прямого включения является самой простой. Она аналогична включению однофазному, только фазы три.

Строгое соблюдение порядка фаз.
Нумерация контактов может быть другой – подключать согласно руководству

При монтаже необходимо перед счетчиком устанавливать пакетник
или автомат общего защитного отключения на четыре провода: 3 фазы и ноль.
Здесь использовано заземление, провод заземления разведен по всем подсетям

Также существует монтаж счетчика по нескольким видам косвенного подключения. Косвенное подключение еще называется трансформаторным, так как измеряется ток и напряжение не напрямую, а с использованием измерительных обмоток.

Трансформаторы тока имеют входы:
л1 (фазный) и и1 (измерительной обмотки)
и выходы:
л2 (фазный) и и2 (измерительной обмотки)

При соединении всех выходов измерительных обмоток с заземлением получается тип подключения «звезда»

Более сбалансированная схема

Косвенное подключение трехфазного счетчика используется на высоковольтных линиях.

Используются высоковольтные измерительные трансформаторы тока
и измерительные трансформаторы напряжения

Для сети потребления косвенное подключение не используется. Как установить его — хорошо знают профессионалы.

Схема Подключения Трехфазного Счетчика Через Трансформаторы

Если комиссия по приемке оборудования в эксплуатацию будет настаивать на снятии заземляющего кабеля, то шлейф придется удалить. Монтажная схема соединения счетчика через испытательную коробку.

masters/2013/etf/dolgikh/diss/images/trehfaznii_trehelementnii_schetchik.jpg» />
Подключения счетчика через трансформаторы тока Как уже было написано выше при напряжении сети 0,4 кВ Вольт и нагрузках свыше Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока: Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями может использоваться только при полукосвенном включении.

Выполнение всех монтажных работ должно происходить в строгом соответствии с утвержденным проектом. И в большей — так называемых цифровых моделей, в которых подсчет протекающей электрической энергии осуществляется полупроводниковой микросхемой.
Подключение трехфазного счетчика



Схема подключения однофазного счетчика электроэнергии приведена ниже.

В электрических цепях с переменным напряжением 0,4 кВ Вольт , силой тока больше чем Ампер и с потреблением мощности соответственно больше 60 кВт применяется подключение трёхфазного электросчётчика через измерительный трансформатор тока. Потребность в питании Вольт объясняется применением силового оборудования, в состав которого входят электродвигатели.

Трехфазное устройство Трехфазный счетчик для нагруженной сети с током более А сделать трудно, т.

Проверка трансформатора на работоспособность требуется, если имеются подозрения на его неисправность. Через вторичную обмотку проходит ток не выше 5 А.

Высокая надежность. Многофазные приборы содержат в конструкции звеньевую или петлевую обвивку.

Замена электросчетчика без снятия напряжения

Схемы подключения

Но в этом случае надо сделать перемычку между первым и вторым зажимом в группе на клеммной коробке счетчика электроэнергии. Такая схема подключения позволяет измерять высокую потребляемую мощность приборами, рассчитанными на низкие показатели мощности.

При выборе подходящего варианта подключения электросчетчика Меркурий в первую очередь исходят из соображений безопасности. Чтобы получить необходимое значение, схему прибора строят из двух независимых цепей — тока и напряжения.

Прямая, использующаяся в сетях, токи нагрузки в которых не превышают 50 ампер.

Прямая, использующаяся в сетях, токи нагрузки в которых не превышают 50 ампер.

На каждом из них предусмотрены первичная и вторичная обмотки.

В случае нарушения совмещенной токовой цепи электроэнергия не учитывается ни по одной из фаз.

Затем осуществляется монтаж проводов на клеммную колодку счётчика в соответствии со схемой подключения. Первичные обмотки подсоединяются исключительно в последовательности, а вторичные — в любом положении.
Подключение трехфазного счетчика через трансформаторы тока.

Навигация по записям

Варианты схем подключения трехфазных счётчиков Варианты подключений электросчётчиков могут быть различными, и определяются они в первую очередь мощностью нагрузки. Если комиссия по приемке оборудования в эксплуатацию будет настаивать на снятии заземляющего кабеля, то шлейф придется удалить.

Если устройство рассчитано на прямой способ установки, то его запрещено применять совместно с трансформатором. Почему существует два типа схем подключения Измерительная пара является самым уязвимым местом в конструкции электрического счетчика.

Потребители не должны подсоединяться к линии перед смонтированным счетчиком.

Схема подключения трансформатора тока к счетчику представлена на рисунке ниже. Такой эффект получается из-за того, что сам индукционный прибор имеет значительное потребление и возникающий в его цепи ток уходил в его электромагнитный поток. Разрыв вторичной цепи вызывает потерю компенсирующего действия электромагнитной индукции от тока, проходящего по вторичным виткам. Технология самостоятельной установки: монтаж на DIN-рейке электрического щита вводного автомата и трехфазного счетчика электроэнергии; спуск фиксаторов на оборотной стороне трёхфазного прибора энергоучета, с последующей установкой и поднятием фиксаторов; подсоединение вводного автомата с необходимыми вводными клеммами на электросчетчике, в соответствии со схемой подключения.

Недостатком такой схемы является большое число кабелей. При этом принцип подключения остается тем же: абстрагируясь от того, что ток переменный, направление движения электроэнергии считается односторонним — от поставщика к потребителю. Прибор состоит из сердечника, группы первичных витков и вторичной катушки с большим числом оборотов проволоки.

Общее понятие


Выполнение всех монтажных работ должно происходить в строгом соответствии с утвержденным проектом. По всей плане эта частота регламентируется другими величинами. Отличие трехфазного от однофазного прибора учета лишь в количестве пар измерительных катушек, а также зажимов на клеммной колодке. В первом случае коэффициент трансформации равен двадцати, а во втором — тридцати.

В быту подавляющее большинство счетчиков, будь то однофазных или трехфазных, имеют схему прямого включения. Такое включение чувствительно реагирует на обрыв фазного кабеля. Принцип работы трансформатора тока Трансформаторы тока — это электрические устройства, преобразующие ток нагрузки до величины, при котором прибор учёта электроэнергии будет работать в нормальном режиме. Они работают при частоте 50 Гц и номинальной силе тока 5 А.

Это помогает осуществлять замену и проверку схемы присоединения прибора, позволяет определить погрешность в измерениях непосредственно на месте установки электросчетчика при наличии нагрузочного тока без отключения потребителей. Монтажная схема соединения счетчика с использованием 2 ТТ и 3 ТН. Трансформаторы тока для электросчетчиков нормально функционируют при рабочей частоте в 50 Гц и вторичном номинальном токе в 5 ампер.
Трёхфазный щит. Ошибки схемы.

Маркирование проводников ТТ в испытательной коробке

Сколько стоит 1 киловатт электроэнергии Подключение электросчетчика через трансформаторы тока Система учета в четырех-проводных сетях подразумевает измерение электроэнергии при помощи 3-фазных счетчиков, конструкция, которых рассчитана на прямое подключение или при использовании трансформаторов тока.

Читайте так же:
Схема подключения электросчетчика нева 301

Подключение электросчетчика через трансформаторы тока выполняется при помощи десятипроводного кабеля. Рассмотрим установку трехфазного электросчётчика с измерительными трансформаторами на примере счётчика Меркурий.

В неполную звезду Особенностью двухфазной двухрелейной схемы подсоединения с образованием неполной звезды. А также имеются и клеммы идущие непосредственные на подключение непосредственно к счётчику, они обозначены как И1 и И2.

Лишь после выполнения этого требования рассматриваются вопросы экономичности и удобства обслуживания или ремонта. Следовательно, счетчик не будет работать и выдавать показания. Если устройству требуется напряжение в 12 Вольт, необходимо подключать его через трансформатор.

Трехфазные счётчики нового поколения Меркурий можно программировать на различные режимы работы, менять тарифный план и даже дистанционно передавать показания электроэнергии. Технология самостоятельной установки: монтаж на DIN-рейке электрического щита вводного автомата и трехфазного счетчика электроэнергии; спуск фиксаторов на оборотной стороне трёхфазного прибора энергоучета, с последующей установкой и поднятием фиксаторов; подсоединение вводного автомата с необходимыми вводными клеммами на электросчетчике, в соответствии со схемой подключения. Их чаще устанавливают на производственных мощностях с целью контроля энергии высоковольтных линий.

Такие измерительные приборы называют трансформаторными счетчиками, т. Образуется трехфазная 4-проводная схема, часто используемая для воздушных электромагистралей. Они успешно работают только при наличии трех фазных напряжений и применяются в скважных насосах, станках и других образцах техники, используемой в личных целях. Установка счетчика с трансформаторами тока.

Для схемы обязательно присутствие нулевого проводника. В точке, где к фазной линии подключается катушка напряжения, в индукционных счетчиках расположен регулировочный винт, который пломбируется на заводе-изготовителе или представителями энергоснабжающих организаций. Этот же принцип используется при формировании массива статорной обмотки однофазного электродвигателя. Коэффициент трансформации у него Недостатком этого способа считается большое количество коммутационных элементов, снижающих надежность выполнения счетчиком своих функций.

После считывания показаний применяется коэффициент для пересчета. Как правильно выбрать провод заземления и какие марки наиболее популярны, читайте далее. К данной категории относится схема, позволяющая подключить счетчик к трехфазной трехпроводной сети посредством 2-х трансформаторов тока и 2-х преобразователей напряжения. Кабель, подключаемый к выходам Л1 и Л2, рассчитывается на необходимую нагрузку.
Подключение трехфазного счетчика

Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети

Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

Схемы подключения трехфазного двигателя

Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода:

  • Схема звезды.
  • Схема треугольника.

Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.

Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.

Проверка схемы подключения мотора

Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

Читайте так же:
Счетчик электроэнергии номинальный максимальный ток
Метод определения фаз статора

После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах. Нужно помнить, что обязательна маркировка проводов, любым способом.

Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

Полярность обмоток
Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
  • Подключить импульсный постоянный ток.
  • Подключить переменный источник тока.

Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

Как проверить полярность обмоток батарейкой и тестером

На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.

Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

Проверка переменным током

Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

Схема звезды

Этот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

С = (2800 · I) / U

Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.

Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».

Схема треугольника

Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.

Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

С = (4800 · I) / U

Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

Двигатель с магнитным пускателем

Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.

Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.

В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

Подключение мотора от автомата
Общий вариант такой схемы подключения выглядит как на рисунке:

Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.

Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.

голоса
Рейтинг статьи
Ссылка на основную публикацию