Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема управляемого стабилизатора тока

Базовые схемы стабилизаторов на основе классической ИМС 723

6.01. ИМС стабилизатора 723

Классический стабилизатор μΑ723 разработан Р. Видларом в 1967 г. Это универсальный, простой в употреблении стабилизатор с превосходными рабочими характеристиками. Хотя, быть может, вы предпочтете ему более современные схемы, все же его стоит изучить, так как и новые схемы работают на тех же принципах. Его схемы изображены на рис. 6.1 и 6.2.

Рис. 6.1. Функциональная схема стабилизатора 723

(фирма Fairchild Camera and Instrument Corp.).

Рис. 6.2. Принципиальная схема стабилизатора 723

(фирма Fairchild Camera and Instrument Corp.).

Это настоящий блок питания, который содержит температурно-компенсированный источник опорного напряжения, дифференциальный усилитель, последовательно включенный проходной транзистор и схему защиты, обеспечивающую ограничение выходного тока. В том виде, в котором блок выпускают, ИМС 723 ничего не регулирует. Чтобы заставить его делать то, что вам нужно, придется подключить к нему некоторые внешние цепи. Прежде чем их рассмотреть, обратимся к его собственной схеме. Она проста и легко понятна (в отличие от схем внутреннего устройства многих других ИМС).

Сердцем стабилизатора является температурно-компенсированный стабилитронный источник опорного напряжения. Стабилитрон Д2 имеет положительный температурный коэффициент, поэтому его напряжение складывается с перепадом напряжения между базой и эмиттером транзистора Т6 (вспомните: величина UБЭ имеет отрицательный температурный коэффициент около — 2 мВ/°С) для опорного напряжения 7,15 В с приблизительно нулевым температурным коэффициентом (обычно 0,003 %/°С). Транзисторы Т4Т6 предназначены для смещения Д2 током I = UБЭ/R8, стабилизированным отрицательной обратной связью по постоянному току, как показано на схеме. Транзисторы Т2 и Т3 образуют несимметричное токовое зеркало для смещения источника опорного напряжения. Ток этих транзисторов устанавливается диодом Д1 и резистором R2 (в точке их соединения фиксируется напряжение на 6,2 В ниже U+), которые, в свою очередь, запитаны током транзистора Т1 — полевого транзистора с p-n-переходом, который работает как источник тока.

Транзисторы Т11 и Т12 образуют дифференциальный усилитель (иногда его называют «усилителем сигнала ошибки», если описывают схему в терминах отрицательной обратной связи) — это типичная дифференциальная пара с высоким подавлением синфазных сигналов за счет эмиттерного источника тока Т13. Последний входит в половину токового зеркала на Т9, Т10 и Т13, в свою очередь управляемого токовым зеркалом Т7 (Т3, Т7 и Т8 — все эти транзисторы «отражают» ток, задаваемый источником опорного напряжения на Д1; см. разд. 2.14). Коллектор транзистора Т11 имеет фиксированный положительный потенциал эмиттера Т4, а выходной сигнал усилителя ошибки снимается с коллектора Т12. Токовое зеркало Т8 запитывает коллекторную нагрузку Т12. Транзистор Т14 включен вместе с транзистором Т15 по «неполной» схеме Дарлингтона. Заметьте, что коллектор транзистора Т15 выведен отдельно, чтобы обеспечить возможность подведения отдельного положительного питания. При включении транзистора Т16 запираются проходные транзисторы для того, чтобы ограничить выходной ток на безопасном уровне. В отличие от многих более новых схем стабилизаторов ИМС 723 не снабжена встроенными схемами аварийного отключения для защиты от чрезмерных токов нагрузки или слишком большого рассеяния мощности на ИМС.

Существуют улучшенные стабилизаторы типа 723, а именно SG3532 и LAS1000 с низковольтными источниками опорного напряжения с малым разбросом (см. разд. 6.15), внутренними ограничителями тока и схемами тепловой защиты.

6.02. Стабилизатор положительного напряжения

На рис. 6.3 показано, как на базе ИМС 723 построить стабилизатор положительного напряжения. Все необходимые элементы, кроме четырех резисторов и двух конденсаторов, содержатся в самой ИМС. Делитель напряжения R1R2 задает часть выходного напряжения, сравниваемую с опорным, а элементы ИМС 723 обеспечивают все остальные функции.

Читайте так же:
Для чего служит стабилизатор напряжения тока

Рис. 6.3. Стабилизатор на ИМС 723 (Uвых > Uoп).

Такая схема подобна неинвертирующему усилителю на ОУ с эмиттерным повторителем на выходе, если напряжение Uoп рассматривать в качестве «входного сигнала». Резистор R4 подбирают так, чтобы падение напряжения на нем при максимально необходимом выходном токе было равно

0,5 В, т. е. напряжению UБЭ. Тогда при слишком большом токе это напряжение, приложенное к входам ОТ-ДТ, включит токоограничивающий транзистор (Т16 на схеме 6.2), запирающий проходной транзистор. Конденсатор емкостью 100 пФ добавлен для обеспечения устойчивости при включении обратной связи. Резистор R3 (иногда отсутствует) подбирают так, чтобы на входах дифференциального усилителя было бы одно и то же сопротивление. Это делает выходной сигнал нечувствительным к изменениям базовых токов смещения (например, при изменении температуры), подобно тому как это делалось при включении ОУ (см. разд. 4.12).

С помощью этой схемы можно получить любое стабилизированное напряжение питания от Uoп до максимально допустимого уровня 37 В. Входное нестабилизированное напряжение (причем с учетом его колебаний) должно на несколько вольт превышать выходное. Для стабилизатора 723 «перепад напряжения», т. е. величина, на которую подводимое напряжение питания должно превышать стабилизированное напряжение на выходе, должен быть не менее 3 В. Это значение типично и для большинства других стабилизаторов. Резисторы R1 и R2 обычно переменные или подстраиваемые, чтобы можно было точно установить выходное напряжение. Значение Uoп имеет производственный разброс от 6,8 до 7,5 В.

Как правило, выход рекомендуется шунтировать конденсатором емкостью в несколько микрофарад, как показано на схеме. Это сохраняет малые значения полного выходного сопротивления и на высоких частотах, при которых обратная связь становится менее эффективной. Лучше всего конденсатор выбрать в соответствии с рекомендацией изготовителя, иначе могут появиться автоколебания. И вообще, неплохо заземлить по переменному току шины питания во всей запитываемой схеме, применяя для этого керамические конденсаторы 0,01-0,1 мкФ в сочетании с танталовыми или электролитическими 1-10 мкФ.

Для выходных напряжений, меньших Uoп, надо просто поставить делитель опорного напряжения (рис. 6.4). Тогда напряжение выхода будет сравниваться с нужной долей опорного напряжения.

Рис. 6.4. Стабилизатор на ИМС 723 (Uвых

Принцип построения схем стабилизаторов с управляемыми приборами

Стабилизаторы с регулированием по возмущению.На рис. 30 дана схема построения стабилизатора с регулированием по воз­мущению. В качестве исполнительного элемента стабилизатора используется управляемый прибор (электронная лампа, дроссель насыщения и т. п.). Преобразователь энергии (выпрямитель, тран­сформатор) не является обязательным элементом схемы, и в от­дельных случаях может отсутствовать (например, в электронном стабилизаторе постоянного напряжения.

Рисунок 30 Блок-схема стабилизатора с регулированием по возмущению

Управляющие элементы У-1 и У-2 создают сигналы управле­ния, пропорциональные изменениям внешних условий. Связи, создаваемые управляемыми элемен­тами, в таких стабилизаторах являются связями по возмущению, так как изменение того или иного параметра исполнительного элемента обусловливается, как и в стабилизаторах с нелинейными элементами, возмущающими воздействиями.

При таком методе стабилизации схема должна иметь столько управляющих цепей, сколько причин влияет на стабилизируемую величину. На приведенной схеме даны две такие цепи. В дей­ствительности причин может быть больше, однако с увеличением количества управляющих цепей помимо усложнения схемы созда­ются большие трудности правильного подбора параметров схемы. Поэтому практически стабилизаторы с регулированием по возму­щению дают удовлетворительные результаты только в тех случаях, когда исполнительный элемент схемы реагирует на изменение внешних факторов, число которых не превышает двух (например, колебания входного напряжения и изменение сопротивления нагрузки).

Стабилизаторы с регулированием по отклонению.На рис. 31 дана схема построения стабилизатора с регулированием по от­клонению. Для получения управляющего сигнала, пропорцио­нального погрешности стабилизации, служит измери­тельный (или выяви тельный) элемент схемы. В состав измерительного элемента входят датчик сигнала обратной связи и источник эталонной или опорной величины (батарея гальванических элемен­тов, газоразрядный или кремниевый стабилитроны и т. п.), с ко­торым сравнивается стабилизируемая величина. Источник эта­лонной величины часто называют зада т чином. В результате такого сравнения образуется

управляющий сигнал, величина ко­торого обычно бывает недостаточной для управления исполни­тельным элементом стабилизатора. Для усиления этого сиг­нала служит усилительный элемент стабили­затора, называемый иногда усилителем регулирующих воз­действий или просто усилителем постоянного тока.

Рисунок 31 Блок-схема стабилизатора с регулированием по отклонению

Характерной особенностью метода регулирования по откло­нению является наличие замкнутой цепи для управляющего сигна­ла. От измерительного элемента сигнал поступает в усилительное устройство, далее в исполнительный элемент и оттуда через пре­образователь энергии вновь на измерительный элемент. Таким образом, имеет место обратная связь между выходом стабилиза­тора и его входом. Так как сущность этого метода заключается в компенсации погрешности стабилизации, то эта связь должна быть отрицательной.

Регулирование по отклонению дает хорошие результаты при высокой стабильности источника эталонной величины (при вы­сокой стабильности задатчика) и при достаточно большой и пос­тоянной величине коэффициента усиления усилительного элемента. Вследствие того что управляющий сигнал является функцией погрешности стабилизации, процесс стабилизации при регулиро­вании по отклонению не зависит от количества и сочетания внеш­них причин, вызывающих изменение напряжения и тока на выходе стабилизатора.

Стабилизаторы с комбинированным управлением. Такой ста­билизатор представляет собой комбинацию стабилизаторов регулированием по отклонению и по возмущению. При правильно подобранных связях по возмущению удается получить наиболее высокую точность стабилизации без особого усложнения схемы. Сложность построения стабилизатора с комбинированным мето­дом управления обусловливается трудностью правильного вы­бора связей по возмущению.

В последующих главах рассматриваются схемы и работа электронных стабилизаторов напряжения, транзисторных стаби­лизаторов напряжения и стабилизаторов напряжения и тока с дросселями насыщения.

Основными элементами транзисторных стаби­лизаторов напряжения являются транзисторы.

Дроссели насыщения (или управляемые дроссели) — основные элементы стабилизаторов с дросселями насыщения. Они исполь­зуются в качестве исполнительного элемента, а также являются основными приборами усилительных и измерительных элемен­тов схемы. Поэтому, прежде чем рассматривать принцип дей­ствия и особенности различных схем стабилизаторов с дросселями насыщения, следует остановиться на устройстве и технических свойствах дросселей насыщения, а также уяснить работу маг­нитных усилителей и других устройств, применяемых в стабилиза­торах с дросселями насыщения.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.002 с) .

Большая Энциклопедия Нефти и Газа

Компенсационный стабилизатор

В качестве компенсационных стабилизаторов используют ламповые и полупроводниковые схемы, представляющие собой систему автоматического регулирования, в которой независимо от изменения входного напряжения, сопротивления нагрузки и параметров схемы с заданной точностью поддерживается постоянным ток или напряжение на выходе. [46]

Основными элементами транзисторного компенсационного стабилизатора являются регулирующий и сравнивающий элементы. Для обеспечения повышенной стабильности выходного напряжения в стабилизатор включают усилитель постоянного тока и параметрический полупроводниковый стабилизатор вспомогательных напряжений, используемых для питания усилителя постоянного тока и схемы сравнения. [48]

Структурная схема компенсационного стабилизатора последовательного типа представлена на рис. 9.2, а. В этой схеме регулирующий элемент РЭ включен последовательно с нагрузкой и играет роль управляемого балластного сопротивления. [49]

Структурная схема компенсационного стабилизатора параллельного типа приведена на рис. 9.3. В этой схеме регулирующий элемент РЭ подключен параллельно нагрузке RB. Последовательно с ними включается балластный резистор RQ. Таким образом, схема компенсационного стабилизатора параллельного типа при отсутствии усилителя У по своей структуре напоминает схему параметрического стабилизатора, в который роль регулирующего элемента играет стабилитрон. [50]

Структурная схема компенсационного стабилизатора последовательного типа представлена на рис. 9.2, а. В этой схеме регулирующий элемент РЭ включен последовательно с нагрузкой и играет роль управляемого балластного сопротивления. [52]

Структурная схема компенсационного стабилизатора параллельного типа приведена на рис. 9.3. В этой схеме регулирующий элемент РЭ подключен параллельно нагрузке Ra. Последовательно с ними включается балластный резистор RQ. Таким образом, схема компенсационного стабилизатора параллельного типа при отсутствии усилителя У по своей структуре напоминает схему параметрического стабилизатора, в который роль регулирующего элемента играет стабилитрон. [53]

Структурная схема компенсационного стабилизатора последовательного типа представлена на рис. 9.3, а. В этой схеме регулирующий элемент РЭ включен последовательно с нагрузкой и играет роль управляемого балластного сопротивления. [54]

Таким образом, компенсационные стабилизаторы основаны на отрицательной обратной связи по напряжению. [55]

Наиболее совершенными являются компенсационные стабилизаторы . [56]

Таким образом, компенсационные стабилизаторы отличаются от параметрических наличием цепи обратной связи и применением управляемых элементов. [58]

В радиосхемах используют параметрические и компенсационные стабилизаторы . Параметрическими называют стабилизаторы, у которых регулирующий элемент воздействует на стабилизируемую величину так, чтобы приблизить ее к заданному значению. [59]

Стабилизаторы напряжения различают компенсационные стабилизаторы непрерывного и импульсного действия . Стабилизато ры напряжения непрерывного действия представляют собой систему автоматического регулирования, в которой — фактическое значение выходного напряжения сравнивается с заданным значением эталонного ( опорного) напряжения. Возникающий при этом сигнал рассогласования усиливается и должен воздействовать на регулирующий элемент стабилизатора таким образом, чтобы выходное напряжение стремилось вернуться к заданному уровню. В качестве источника опорного напряжения обычно используют параметрический стабилизатор, работающий с малыми токами нагрузки, реже гальванические батареи. [60]

Описание стабилизаторов напряжения Lider

Стабилизаторы напряжения Lider выпускаются почти 30 лет, что говорит об их востребованности. Но компания не стоит на месте, постоянно идут инженерно-производственные изыскания по совершенствованию существующих моделей и выпуску принципиально новой продукции, что позволяет ей уверенно удерживать лидирующие позиции поставщика систем качественного и бесперебойного электроснабжения переменного тока.

Схемотехника и принципы работы

Блок управления измеряет действующие значения напряжения на входе и выходе стабилизатора Lider и в зависимости от результатов переключает соответствующие каналы стабилизации. Переключение (переход с одной пары тиристоров на другую) происходит в «мягком» безударном режиме так, чтобы питание нагрузки не прерывалось, а форма выходного сигнала не искажалась. Также блок постоянно контролирует величину тока нагрузки, проверяет наличие синхроимпульсов тока и напряжения и отключает питание нагрузки в случае отказа стабилизатора, его перегрузки, превышения входных и выходных параметров допустимых пределов. Ещё одна функция блока управления — включение вентилятора принудительного охлаждения в зависимости температуры автотрансформатора и силовых ключей.

Структурные схемы стабилизаторов Lider

В стабилизаторах напряжения Lider серии «SQ» для достижения точности стабилизации 0,9÷1,8% применяется вольтодобавочный трансформатор. Его вторичная обмотка запитывается от одного из отводов автотрансформатора через тиристорные ключи, управляемые таким образом, что всегда имеется один активный полупроводник, соединённый с соответствующим данному входному напряжению отводом. Это напряжение добавляется в фазе либо противофазе к сетевому через обмотку трансформатора вольт-добавки, корректируя отклонения от номинального значения. Такое решение даёт больше преимуществ по сравнению со стандартной автотрансформаторной схемой (серия «W»): разгружает силовые электронные ключи, расширяет входной диапазон и повышает точность стабилизации. Силовые ключи на базе тиристорных сборок фирмы «SEMIKRON» гарантируют надёжную работу и качество регулирования.

Параметры эксплуатации

С помощью плёночной клавиатуры управления, расположенной под ЖК дисплеем, проверяется работоспособность вентилятора охлаждения, устанавливается номинальное значение напряжение на выходе (в диапазоне 210÷230В с шагом 2В), задаются параметры адаптивных программ; при выключении все изменения сохраняются. Опционально в стабилизаторах Lider серий «W» и «SQ» устанавливается автоматический байпас, который при технических неполадках с устройством переключит питание нагрузки напрямую от сети. Модели серий «W-SD» и «SQ-I» поставляются с таким байпасом стандартно.

Для сетевого мониторинга и управления поставляется компьютерный интерфейс RS232 с подключением системы Lider-NPort. Согласно правилам электробезопасности, стабилизатор эксплуатируется только в нежилых помещениях, доступ неквалифицированных людей к нему не допускается.

Для стабилизаторов напряжения Lider мощностью более 3 кВА:

  • перегрузочная способность:
    — при Рнагр от 1,1 до 1,5 Рном — 10 сек.
    — при Рнагр от 1,5 Рном до 2 Рном — 5 сек.
    — при Рнагр от 2 Рном до 4 Рном — 1 сек.
    — при Рнагр > 4Рном — 0,5сек.;
  • климатическое исполнение УХЛ 3.1 (температура эксплуатации -40. +40 °С);
  • степень защиты корпуса IP20.

Как разработать прецизионный источник тока на операционных усилителях

В данной статье обсуждается схема источника тока, управляемого напряжением, для которой требуются всего два операционных усилителя и несколько резисторов.

В теории цепей источники напряжения и источники тока одинаково идеальны и одинаково просты в реализации. Вы просто рисуете круг, а затем добавляете знаки плюс и минус для напряжения или стрелку для тока. Теперь у вас есть элемент схемы, который генерирует заданное напряжение во всех условиях или обеспечивает заданный ток во всех условиях.

В реальной жизни источники не идеальны, и, кроме того, приблизиться к теоретическому источнику напряжения значительно проще, чем к теоретическому источнику тока. Источники напряжения бывают простыми, такими как аккумулятор, стабилитрон или резистивный делитель напряжения в сочетании с буфером.

Источники тока, напротив, обычно требуют некоторой продуманной схемы и большего внимания к деталям своей работы.

Архитектуры источников тока

Для создания источника тока существуют различные способы. Прежде чем мы рассмотрим схему с двумя операционными усилителями, давайте кратко рассмотрим некоторые другие варианты. Вы можете узнать обо всех них подробнее, кликнув на соответствующие ссылки.

Рисунок 1 – Схема применения LT3085, взята из технического описания LT3085

Другой вариант – схема на основе усилителя, которую я обсуждал в предыдущей статье о том, как разработать простой, управляемый напряжением, двунаправленный источник тока. Схема на основе усилителя отдаленно напоминает схему с двумя операционными усилителями, но один из усилителей представляет собой не операционный усилитель, а измерительный (инструментальный усилитель).

Рисунок 2 – Схема источника тока, управляемого напряжением. взята из технического описания LT1102

Наконец, у нас есть источник тока Хауленда, который был тщательно проанализирован в статье, написанной доктором Серджио Франко.

Рисунок 3 – Схема источника тока Хауленда

Схема с двумя операционными усилителями

Я нашел эту схему, которая описывается как «прецизионный источник ток», в старой заметке к применению от Analog Devices. Она производит ток на двунаправленном выходе, прямо пропорциональный входному напряжению.

Ниже показана принципиальная схема:

Рисунок 4 – Схема прецизионного источника тока

В этой схеме мне нравятся несколько вещей. Во-первых, необходимы только два типа компонентов: операционные усилители и резисторы.

Во-вторых, используются операционные усилители одинаковой модели. В этой схеме используются два операционных усилителя, тогда как в источнике Хауленда используется только один. Но тот факт, что оба операционных усилителя могут быть одной модели, является преимуществом, потому что вы можете использовать микросхему с двумя операционными усилителями и тем самым минимизировать любые расходы (дополнительная стоимость и место на плате) для второго операционного усилителя.

В-третьих, четыре из пяти резисторов (R2, R3, R4, R5) могут иметь одинаковые номиналы, и тогда коэффициент усиления по отношению тока к напряжению регулируется только одним резистором (R1). Номинал R2–R5 не является критическим, и поэтому вы можете адаптировать схему к компонентам, которые у вас уже есть в лаборатории. Однако имейте в виду, что резисторы более высокой точности будут давать в результате более точный источник тока.

В-четвертых, входное напряжение дифференциальное. Это дает вам некоторую гибкость в том, как вы подаете управляющее напряжение, и это позволяет вам использовать возможности двунаправленного выхода тока схемы без необходимости генерировать управляющее напряжение, которое находится ниже уровня земли.

Основы работы источника тока с двумя операционными усилителями

Чтобы проанализировать источник тока на двух операционных усилителях, мы будем использовать его реализацию в LTspice.

Рисунок 5 – Источник тока на двух операционных усилителях. Схема LTspice

Здесь я использую «идеальный однополюсный операционный усилитель» из LTspice. Сначала я попробовал это с OP-77, но симуляция не прошла должным образом. Возможно, возникла проблема с макромоделью OP-77, потому что у меня есть другая версия схемы, в которой используется операционный усилитель LT1001A, и она моделируется правильно.

Схемы источника постоянного тока обычно полагаются на некоторый тип обратной связи, который заставляет источник напряжения вырабатывать заданный ток независимо от сопротивления нагрузки (простой пример этого вы можете увидеть в управляемом напряжением светодиодном драйвере).

В источнике тока с двумя операционными усилителями U1 усиливает дифференциальное управляющее напряжение, а U2 сконфигурирован как повторитель напряжения, который измеряет напряжение на нагрузке и подает его обратно на входной каскад.

Показанная выше конфигурация источников напряжения создает дифференциальное входное напряжение, которое изменяется от +250 мВ до –250 мВ. Согласно уравнению, приведенному в примечании к применению, выходной ток должен изменяться от 2,5 мА до –2,5 мА, поскольку AV = 1 и R1 = 100 Ом, и это именно то, что мы наблюдаем:

Рисунок 6 – Зависимость выходного тока от входного дифференциального напряжения

Одна вещь, на которую вам нужно обратить внимание в этой схеме, – это выходное напряжение U1. Весь ток нагрузки исходит от U1. Если пренебречь очень небольшими токами, которые протекают через резистор обратной связи R4 и на неинвертирующий вход U2, напряжение на выходе U1 будет равно Iвых, умноженному на сумму сопротивления нагрузки и сопротивления R1.

Это напряжение может легко превысить то, что фактически может генерировать выходной каскад операционного усилителя, особенно если вы используете шины ±3 В или ±5 В, а не аналоговые напряжения питания ±12 В или ±15 В, которые, как я полагаю, раньше были более распространены.

Из-за этого ограничения я бы сказал, что источник тока с двумя операционными усилителями является подходящим выбором для приложений с низким сопротивлением нагрузки и/или небольшими выходными токами.

Заключение

Мы кратко рассмотрели схему двунаправленного источника тока, которая имеет разумные требования к перечню элементов и включает в себя входной каскад дифференциального управляющего напряжения. В следующей статье мы будем использовать LTspice для более подробного анализа производительности этой схемы.

голоса
Рейтинг статьи
Ссылка на основную публикацию