Schetchiksg.ru

Счетчик СГ
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схемы регулируемых стабилизаторов тока радиолюбителя

Схемы регулируемых стабилизаторов тока радиолюбителя

5.3 Источники питания

Устройства, собранные на полупроводниковых приборах (транзисторы, тринисторы, микросхемы) и электромагнитных реле, питаются от источников постоянного напряжения. Как правило, отклонения напряжения от номинального значения не должны выходить за границы определенных допусков (например, для микросхем серии К155 питающее напряжение должно составлять 5В±5%). Поэтому источник питания устройств кроме трансформатора и выпрямителя должен содержать еще и стабилизатор напряжения.

Основой стабилизатора напряжения чаще всего служит кремниевый стабилитрон, включенный в обратном направлении (катодом к положительному полюсу источника питания, анодом — к отрицательному). При таком включении напряжение на стабилитроне (напряжение стабилизации Ucт) мало зависит от тока через стабилитрон (тока стабилизации 1ст). Эти две величины и являются основными параметрами стабилитронов. Так, для стабилитрона КС156А напряжение стабилизации (номинальное) составляет 5,6 В (при номинальном токе стабилизации 10 мА), а ток стабилизации может быть в пределах 3. 50 мА. Если нагрузка потребляет больший ток, применяют усилитель тока. В простейшем случае это может быть транзистор, включенный по схеме с общим коллектором (эмиттерный повторитель).

Схема такого источника питания показана на рис. 101. Напряжение сети, пониженное трансформатором Т1 до 8. 10 В, выпрямляется диодным мостом VD1 и подается на стабилизатор напряжения, в котором транзистор VT1 включен эмиттерным

повторителем. Напряжение на выходе стабилизатора на 0,5. 1 В меньше напряжения на стабилитроне VD2. По аналогичной схеме можно строить стабилизаторы и на другие значения питающих напряжений, следует лишь для каждого случая подобрать соответствующие стабилитрон и сопротивление резистора R1. Максимальный выходной ток стабилизатора Iвыхmах зависит от используемого стабилитрона и статического коэффициента передачи тока транзистора h21э и может быть найден по формуле

Iвых max=h21эIст max.

Стабилизатор напряжения, собранный по схеме на рис. 101, обладает сравнительно невысокими эксплуатационными характеристиками, но тем не менее может успешно применяться для питания многих радиотехнических устройств (см., например, схемы на рис. 17, 20, 39 и др.).

На рис. 102 приведена схема еще одного стабилизатора напряжения, но с использованием ОУ. Такие усилители имеют очень большой коэффициент усиления (несколько сотен и даже тысяч) и два входа — инвертирующий (на графическом изображении ОУ обозначают кружком) и неинвертирующий. Сигналы, поданные на эти входы, суммируются с учетом их знака и многократно

усиливаются. Характерная особенность стабилизатора напряжения с применением ОУ заключается в том, что в нем выходное напряжение сравнивается с образцовым (опорным) и таким образом поддерживается на заданном) уровне,

Рассмотрим по схеме более подробно работу такого стабилизатора напряжения. Выходное напряжение с делителя R2R3 подается на инвертирующий вход ОУ, а образцовое напряжение, снимаемое со стабилитрона VD1, — на неинвертирующий вход. При небольшом изменении напряжения на выходе стабилизатора на инвертирующем входе (вывод 9) появляется сигнал рассогласования, который многократно усиливается и изменяет напряжение на регулирующем транзисторе VT1 таким образом, что напряжение на выходе стабилизатора практически не изменяется. Этот процесс длится всего несколько микросекунд.

Напряжение на выходе стабилизатора можно определить по упрощенной формуле

Изменяя в небольших пределах сопротивления резисторов R2 и R3, можно изменять выходное напряжение стабилизатора. При этом, как видно из формулы, выходное напряжение не может быть меньше напряжения стабилизации стабилитрона.

Резистор R4 ограничивает выходной ток ОУ, конденсатор С1 предотвращает возбуждение устройства. Коэффициент стабилизации этого источника напряжения составляет 200. 400, а выходное сопротивление — несколько миллиом. Максимальный выходной ток равен произведению предельно допустимого выходного тока ОУ на коэффициент h21э транзистора VT1 и для данной схемы составляет 500. 600 мА. Если же для питания устройства требуется больший ток, чем может обеспечить один регулирующий транзистор, следует применять составной транзистор (например, типов КТ972, КТ825, КТ827). При отсутствии составного транзистора в одном корпусе его можно выполнить из двух обычных транзисторов одной или разных структур.

На рис. 103,а показана схема составного транзистора, образованного транзисторами одной структуры (n-р-n), на рис. 103, б образованного транзисторами разных структур (VT1 — р-n-р, VT2 -n-р-n). Резистор R1 обеспечивает нормальную работу стабилизатора при высоких температурах окружающей среды и малых токах нагрузки. Ток, протекающий через этот резистор, должен быть значительно больше обратного тока коллекторного перехода транзистора VT1 при наибольшей рабочей температуре. Если ток через регулирующий транзистор VT1 превышает 70. 100 мА, транзистор

Читайте так же:
Экономичный стабилизатор напряжения с малым потреблением тока

следует устанавливать на радиатор. Площадь радиатора можно приближенно определить по формуле (для температуры окружающего воздуха около 20°С)

где S — площадь поверхности охлаждения радиатора, см^2; Uкэ -напряжение между коллектором и эмиттером регулирующего транзистора, В; Iнагр — ток нагрузки стабилизатора, А.

На рис. 104 приведена схема еще одного варианта стабилизатора напряжения. В нем применена интегральная микросхема К142ЕН1Б, представляющая собой стабилизатор напряжения. Вот ее основные параметры: диапазон изменения входного напряжения 9. 20 В;

пределы установки выходного напряжения 3. 12 В; максимальный ток нагрузки 0,15 А; минимальное падение напряжения на регули-

рующем элементе 4 В. В микросхеме предусмотрена защита от перегрузок по току и коротких замыкании.

Для указанных на схеме рис. 104 транзисторов и номиналов резисторов выходное напряжение составляет 5 В, а ток срабатывания защитного устройства около 1 А (при уменьшении тока через нагрузку устройство автоматически принимает исходное состояние). При необходимости ток ограничения Ioгр может быть изменен подбором резистора R3. Его сопротивление рассчитывают по формуле

где R3 — в омах;Ioгp — в амперах.

Выходное напряжение устанавливают подбором резистора R6.

В микросхеме предусмотрен вход выключения стабилизатора. При подаче на вывод 9 через резистор R5 напряжения 2. 3 В напряжение на выходе становится равным нулю, Удобно управлять включением и выключением стабилизатора с помощью цифровых микросхем, имеющих питание 5 В.

В настоящее время промышленность выпускает интегральные стабилизаторы с фиксированным напряжением, содержащие в одном

корпусе регулирующий транзистор и узлы управления им (микросхемы серий К142, КР142). Схема стабилизатора напряжением 5 В представлена на рис. 105. Микросхема КР142ЕН5А содержит узел защиты от перегрузки по току. Максимальное значение тока для этой микросхемы составляет около 3 А.

На микросхеме К142ЕНЗА можно выполнить стабилизированный источник напряжения, регулируемого в пределах от 3 до 30 В при токе нагрузки до 1 А. Схема представлена на рис. 106. Выходное напряжение регулируется резистором R4 и может быть вычислено по формуле Uвыx=2,6(R4+R5)/R5, В. Суммарное сопротивление резисторов R4 и R5 не должно превышать 20 кОм. Ток ограничения lorp устанавливают резистором R3, сопротивление которого может быть вычислено по приближенной формуле R3=0,6/Ioгp, где сопротивление берут в омах, а ток — в амперах. В стабилизаторе предусмотрена возможность отключения внешним сигналом. Для этого на резистор R1 подают положительное напряжение, которое должно обеспечивать ток через резистор R1 не более ЗмА. В стабилизаторе

предусмотрена также тепловая защита (при нагревании корпуса микросхемы до определенной температуры выходное напряжение уменьшается до нуля). Температура отключения определяется сопротивлением резистора R2.

Микросхема DA1 должна быть установлена на радиаторе, обеспечивающем требуемую рассеиваемую мощность. Она не должна превышать 6 Вт. Для обеспечения этого условия во всем диапазоне регулируемого выходного напряжения следует применять ступенчатое регулирование выходного напряжения.

Если требуется увеличить допустимый выходной ток, можно применить усилитель тока на транзисторе.

Фрагмент схемы приведен на рис. 107. Резистор R1 подбирают исходя из требуемого тока ограничения (он выполняет ту же функцию, что и резистор R3 в предыдущей схеме). Ток нагрузки может достигать 5. 10 А.

Иногда возникает необходимость получить двуполярное напряжение от однополярного источника (например, для питания операционных усилителей). В этом случае можно воспользоваться приставкой, схема которой представлена на рис. 108.

Типовые и иные схемы включения микросхем серии ИС LM117 / LM217 / LM317

Интегральные стабилизаторы этой серии удобны в использовании во множестве иных применений. Некоторые из его нестандартных применений я вам хочу показать.
В силу того, что данные стабилизаторы имеют «плавающие» относительно «земли» потенциалы выводов, ими могут быть стабилизаторами напряжения в несколько сотен вольт, при условии, что не будет превышен допустимый предел разности напряжений вход-выход.

Читайте так же:
Крен12а схема включения стабилизатор тока

Кроме того, ИС LM117/LM217/LM317 удобны при создании простых регулируемых импульсных стабилизаторов, стабилизаторов с программируемым выходным напряжением, либо для создания прецизионного стабилизатора тока.
Некоторые схемы их необычных применений показаны на рисунках.

Мощный повторитель напряжения.
________________________________________

R1-определяет выходное сопротивление зарядного устройства Zвых = R1(1+R3/R2). Использование R1 позволит при малой скорости заряда обеспечить максимальный заряд батареи.
________________________________________

Интегральные стабилизаторы данной серии можно с успехом использовать для стабилизации тока. Это очень удобно для изготовления на их основе различных зарядных устройств.
________________________________________

На этой схеме изображён интегральный стабилизатор напряжения с плавным запуском. Ёмкость конденсатора С2 задает плавность включения стабилизатора.
________________________________________

Высокая стабильность данного стабилизатора, достигается за счет использования дополнительного интегрального двухвыводного стабилитрона повышенной стабильности.

Интегральные стабилизаторы напряжения LM117/LM317, LM150/IP150, LM138/LM238/LM338
Долгое время у меня служил блок питания, построенный по классической схеме параметрического стабилизатора напряжения с защитой от короткого замыкания [1]. Только в целях получения большего выходного тока транзисторы VT2 и VT3 были заменены на КТ315 и КТ818 соответственно. Полярность выходного напряжения при этом другая, так что все конденсаторы, диоды и стабилитрон (я, кстати, применял КС518 — он выдает 18 вольт) должны быть включены обратной полярностью. Кроме того, вместо VT1 — МП38.
Этот блок питания (БП) являлся универсальным источником энергии для моих домашних экспериментов, выдавая от 0,5 до 18 вольт стабилизированного напряжения при токе 1 — 1,5А. Однако был у него и недостаток — из-за низкого КПД подобных схем выходной мощный транзистор греется как печка.
Долго я хотел сделать этот БП на интегральной базе (там и КПД повыше, да и есть такие функции как защита от перегрева, от короткого замыкания или даже от превышения допустимого тока), только не попадались мне на глаза подобные микросхемы. К142ЕН1, К142ЕН2 [2] — малая мощность, придется ставить дополнительный транзистор на усиление тока, да и слишком много выводов у неё. На КР142ЕН5 можно сделать регулируемый стабилизатор напряжения (СН), однако в этом случае минимальное напряжение будет 5В, что тоже нежелательно.
Таким образом, на отечественной элементной базе построить интегральный СН с желаемыми параметрами невозможно.
Однако зарубежная промышленность (точнее, фирма National Semiconductor) выпускает одну интересную микросхему LM317 (аналог — LM117 той же фирмы — различаются по ряду параметров , в частности, по диапазону рабочих температур, у LM117 он шире (от -55 до +150 °C)).
Так вот, эти микросхемы представляют собой регулируемые СН с выходным напряжением 1,2 — 37В при выходном токе 1,5А. Как уверяют производители, они снабжены защитой от короткого замыкания, выходной ток не зависит от температуры кристалла, гарантируется максимальная нестабильность выходного напряжения 0,3%, подавление пульсаций — на уровне 80 дБ.
К этому стоит добавить малые размеры (микросхема имеет всего три вывода, выпускается в различных корпусах: ТО-220, ТО-3, ТО-39, TO-263, SOT-223, TO-252 (рис. 1)) и низкую стоимость (в магазине я купил LM317 в корпусе ТО-220 за 10 рублей).

Рисунок 1 — Внешний вид корпусов LM117/LM317
Схема регулируемого стабилизатора напряжения показана на рисунке 2.

Рисунок 2 — Схема регулируемого СН (1,25 — 25 В)
Также эти микросхемы применяют как зарядные устройства для аккумуляторных батарей. Типичная схема такого устройства приведена на рисунке 3. Здесь используется принцип зарядки постоянным током.

Рисунок 3 — Схема зарядного усторойства

Как видно из рисунка, ток заряда определяется сопротивлением R1. Значения этого сопротивления лежат в пределах, указанных на рисунке. Это соответствует току заряда от 10 мА до 1,56 A.
Хочу отметить, что если требуется получить больший выходной ток СН, то лучше использовать специальные микросхемы:
— на ток до 3А рассчитана LM150 (IP150);
— на ток до 5А рассчитаны LM138 / LM238 / LM338 (отличаются диапазоном рабочих температур, самый широкий — у LM138 (от -55 до +150 °C).
Схемы включения у этих микросхем такие-же, что и на рисунке 2, цоколевка — как на рисунке 1.
Далее приведены схемы зарядного устройства для автомобильного кислотно-свинцового аккумулятора (рис. 4) и стабилизатора напряжения с максимальным током 10А (рис. 5) как примеры дополнительного применения микросхем LM150 и LM138.

Читайте так же:
Схема интегрального стабилизатора тока

Рисунок 4 — Зарядное устройство для автомобильного аккумулятора на LM150(IP150)


Рисунок 5 — СН с выходным током до 10А

В заключение хочу заметить, что выходной конденсатор С2 по схеме на рис.2 может быть емкостью от 1 до 1000 мкФ — в зависимости от целей применения СН. Однако при емкости свыше 10 мкФ и/или выходном напряжении выше 25 В требуется в схему включать защитные диоды (рис. 6). Это нужно для того, чтобы предотвратить импульс тока, который может возникнуть при коротком замыкании в нагрузке из-за разряда выходного конденсатора. Этот импульс тока может достигать величины 20 А и повредить микросхему.


Рисунок 6

Литература:
1. Shema.Tomsk.Ru — Блок питания с защитой от КЗ;
2. Shema.Tomsk.Ru — Стабилизаторы напряжения на микросхемах серии К142;
3. National Semiconductor — LM117/LM317A/LM317 3-Terminal Adjustable Regulator;
4. LM138/238/LM338 — ADJUSTABLE VOLTAGE REGULATORS THREE-TERMINAL 5-A;
5. LM150/250/LM350 — ADJUSTABLE VOLTAGE REGULATORS THREE-TERMINAL 3 A;
6. LM150K 3.0A Adjustable Positive Voltage Regulator.

Очень многие используют аккумуляторы для питания радиоэлектронной аппаратуры, при этом заряжают их зарядными устройствами сомнительного поисхождения. Ниже приводится описание простого зарядного устройсва обеспечивающего стандартный режим заряда.
Зарядное устройство использует принцип зарядки постоянным токо. В качестве источника тока используется очень хорошая микросхема LM317. Схема включения изображена на рисунке:

Класическое определение источника тока: источник тока — это источник электрической энергии имеющий безконечне внутреннее сопротивление и такое же безконечное напряжение на свобоных зажимах.
Принцип работы примерно такой. LM317 регулируя ток по выводу 3 пытается добится падения напряжения на резисторе R1 равного 1,25V. Следовательно изменяя номинал R1 можно регулировать ток в определенных пределах. Эти приделы ограничены с одной стороны величиной в 0,8 Ом а с другой в 120 Ом(0,8 Поскольку расположение выводов у LM317 не очевидно привожу рисунок самой микросхемы. (вид со стороны маркировки)

Пример
Итак, почти все что надо знать уже изложено, вот конкретный пример использования.
Емкость
mA Ток зарядки
mA Сопротивление
резистора Ом
500 50 24
Так как для нормальной работы необходимо чтобы было хоть какоето падение напряжения на LM317, поэтому напряжение подаваеммое на вход источника тока, должно превосходить наряжение на заряженном аккумуляторе. Например, если это два пальчиковых аккумулятора, то напряжение когда они полностью заряженны приближается к 3 В, и для их зарядки рекомендуется на вход источника тока подавать напряжение не менее 6 В. С другой стороны LM317 не «дубовая» и присутствие более 30 В на входе не желательно.
Питать зарядное устройство наиболее рационально от сети переменного тока 220В через понижающий трансформатор и выпрямитель с простейшим сглаживающим фильтром.

ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

Основой домашней лаборатории радиолюбителя является блок питания. И несмотря на обилие схем источников питания в интернете, при необходимости сделать простой и надёжный регулируемый стабилизатор напряжения я вновь и вновь возвращаюсь к схеме, разработанной ещё лет 20 назад на моих занятиях по радиоэлектронике, но по характеристикам не уступающий современным схемам.

Сейчас появилось множество специализированных микросхемных стабилизаторов, но не так то и легко их достать, особенно за пределами городов с крупными радиорынками, да и по цене многим могут быть не доступны, поэтому данная схема в некоторых случаях будет полезной для изготовления.

Предлагаемый стабилизатор построен по компенсационной схеме, поэтому при изменении тока нагрузки от нуля до 1 А напряжение на выходе остаётся практически неизменным, имеется возможность регулировки выходного напряжения от 0.04 В до 15 В, а также защиту от короткого замыкания в нагрузке и ограничитель выходного тока со светозвуковой индикацией, что позволяет своевременно узнать об аварийной ситуации не глядя на прибор. Блок питания собран на распространённых деталях и в своей основе содержит всего 6 недорогих транзисторов.

Схема устройства изображена на рис.1. Переменное напряжение со вторичной обмотки трансформатора Т1 выпрямляется диодами VD 1 – VD 4 и сглаживается конденсатором С5. Для уменьшения фона и помех, каждый из этих диодов зашунтирован конденсатором. Регулируемый стабилизатор выполнен на транзисторах VT 2 – VT 6 и построен по компенсационной схеме, которая поддерживает высокую стабильность выходного напряжения при изменении тока нагрузки в широких пределах. Транзистор VT 1 открывается при превышении определённого тока нагрузки, устанавливаемом резистором R 3 и шунтирует стабилитрон VD 6, что приводит к уменьшению напряжения выхода стабилизатора почти до нуля. При этом возросшее, относительно минуса, напряжение на коллекторе этого транзистора, открывает стабилитрон VD 5 и поступает на светодиод HL 1 и пьезоизлучатель ВА1, которые сигнализируют о перегрузке по току.

Читайте так же:
Стабилизатор тока последовательное включение

Правильно собранное устройство налаживания не требует, необходимо лишь подобрать сопротивление проволочного резистора R 3 на нужный ток срабатывания защиты. Переменный резистор R 5 СП-1ВБ группы «В” с линейной характеристикой изменения сопротивления. Все остальные резисторы МЛТ-0.25. Конденсаторы С5 – С7 типа К50-35, остальные – К73-17, с рабочим напряжением не менее 50В. Диоды VD 1 – VD 4 любые выпрямительные, на ток не менее 2А. Светодиод красного свечения АЛ307КМ, но лучше использовать мигающий, типа UL-506S11FD-FB. Стабилитрон VD 5 на напряжение стабилизации от 16 до 22 В, его можно составить из двух стабилитронов на меньшее напряжение, например Д814Б, включенных последовательно. Транзисторы VT 2, VT 4 – обязательно германиевые, соответствующих структур, VT 6 – любой типа P — N — P , с током коллектора не менее 5 А. Его монтируют на алюминиевой пластине размерами 100х100х5мм. Трансформатор Т1 с напряжением на вторичной обмотке в пределах 18 – 25 В и габаритной мощностью от 40 ватт. Тумблер включения – с одной группой замыкающихся контактов на напряжение 250 В и ток 1А. пьезоизлучатель — любой малогабаритный со встроенным генератором и питающийся напряжением 24В. Для точного контроля напряжения на выходе можно установить вольтметр, в авторском варианте его функцию исполняет мультиметр DT 830 B , установленный на измерение напряжений до 20В и встроенный в корпус блока питания, 9В для питания мультиметра получаем с дополнительной обмотки трансформатора через простейший выпрямитель на КЦ407А и электролитический конденсатор 470 мкф на 16В. Небольшое удорожание конструкции компенсируется точностью и удобством в эксплуатации прибора.

Это фото моего двухканального БП сделанного по этой схеме. Не пожалел 2 мультиметра DT-830 для индикации тока и напряжения.

—>САЙТ МЕДИКОВ-РАДИОЛЮБИТЕЛЕЙ SMHAM —>

—> —>Вход на сайт —>

Войти через uID

—> —>Поиск —>

—> —>Статистика —>

Каталог статей и схем

На страницах СМР мы стараемся публиковать материалы, повторенные автором заметки (статьи), своего рода – проверенные. Особенно это характерно для нашей рубрики – «Советуем повторить…»

И в данном случае в одном из наших материалов было указано (цитата): «…второе плечо БП собрано по другой схеме … В нашем варианте стабилизатор собран на основе микросхемы К142ЕН3А… — о нем планируется публикация заметки в 2012 г.)».

Приведенная в статье схема блока питания (БП) не отличается ни новизной ни оригинальностью. Надеемся, однако, что с практической точки зрения описанные особенности конструкции и расчета схемы помогут начинающим собрать свой первый БП. Отдельный или в составе упоминавшегося выше.

Примененная во втором плече БП микросхема К142ЕН3 (3А) – это интегральный регулируемый стабилизатор, имеющий систему защиты от перегрева и перегрузки по току. По техническим условием допускается однократная ее перепайка-выпайка с платы. Это важно знать, т.к. в любительских условиях часто «добывать» микросхему приходится со старых плат. Впрочем, нам кажется, что при соответствующей аккуратности выпайку и перенос микросхемы можно выполнить и многократно. Но следует обратить внимание, чтобы на корпусе микросхемы было указан соответствующий код, указывающий либо на отсутствие в конце названия микросхемы буквы «А», либо на ее присутствие.

Таким образом, мы выбрали микросхему с максимальным током нагрузки – 1 А. Это микросхемы К142ЕН3 (код на корпусе 10) или К142ЕН3А (код на корпусе К10). Другие коды на корпусе (11, К11, 31, К31, К32) и, соответственно, другие буквы в конце обозначения микросхем показывают другой, меньший ток нагрузки, нам не подходящий (0,3 — 0,75 А – это микросхемы …ЕН3Б,…ЕН4, …ЕН4А, Б).

Читайте так же:
Стабилизатор тока повышенной мощности

Другие электротехнические характеристики по данной микросхеме можно найти в справочной литературе и в интернете, однако следует учитывать разброс приводимых параметров в разных источниках и авторов (в нашем архиве – данные из справочника И.В.Новаченко и соавт. [1]).

На что следует обратить внимание. Входное напряжение не должно превышать 40 — 45 В, а максимальный ток нагрузки 1 А – это максимальные значения. Напряжение стабилизации можно получить от 3 до 30 В +/-0,05, сама микросхема потребляет ток 10 мА. Минимальное падение напряжения на стабилизаторе равно 3 — 4 В, что соответственно ориентирует на то (при выборе трансформатора), что на входе превышение входного напряжения над выходным должно быть выше указанных цифр начиная с Uвх=19 В (или больше — в зависимости от потребляемого тока, естественно. В нашем случае – около 22 В).

Регулируемый источник напряжения на базе собран по классической схеме на рис.1. По этой схеме на микросхеме К142ЕН3 (…3А) можно выполнить стабилизированный источник напряжения, регулируемого в пределах от 3 до 30 В при токе нагрузки до 1А.

В данном случае, как видно из схемы, выходное напряжение не превышает 15 В. Это обусловлено напряжениями вторичных обмоток примененного трансформатора ТП-215. Чтобы получить ток до 0,5 А его вторичные обмотки запаралеллены и, таким образом, «умощнены». На соответствующий ток выбран и выпрямительный мост — КЦ407А.

Назначение выводов микросхемы: 2 — вход системы защиты, 4 — вход сигнала обратной связи, 6 — цепь выключения, 8 — общий вывод, электрически соединен с фланцем, 11 — 17 — коррекция, 13 — выход, 15 — вход.

Для расчета схемы стабилизатора применены известные формулы расчета. Выходное напряжение регулируется резистором R3 и может быть вычислено по формуле:

Uвых=2,6( R 3+ R 4)/ R 4 (В).

Суммарное сопротивление резисторов R3 и R4 не должно превышать 20 к0м. Ток ограничения Iогр. устанавливают резистором R2, сопротивление которого может быть вычислено по приближенной формуле

где сопротивление берут в омах, а ток — в амперах.

Как видно из схемы БП, предусмотренная возможность отключения внешним сигналом не используется (вывод 6, рис.2). Но, при необходимости, в принципе, ничто не мешает это сделать. Для этого на вывод 6 нужно подать положительное напряжение через токоограничивающий резистор, чтобы обеспечивать ток в его цепи не более 3 мА.

Работа внутренней схемы тепловой защиты (при нагревании корпуса микросхемы до определенной температуры выходное напряжение уменьшается до нуля) определяется сопротивлением резистора R 1. Его номинал (около 6 кОм) рассчитан по формуле из [1] и определяет порог срабатывания тепловой защиты в диапазоне температур корпуса 65 – 100 С° . В случае срабатывания тепловой защиты повторное включение стабилизатора возможно только после остывания микросхемы.

С учетом допустимой рассеиваемой мощности на микросхеме (6 Вт) она может быть установлена на радиаторе, обеспечивающем требуемую рассеиваемую мощность (зависит от выходного напряжения и потребляемого тока).

Выводы выходного напряжения микросхемы допускается соединять с общим выводом БП («+» или «-» ). При этом корпус микросхемы должен быть изолирован от его общего вывода, т.к. вывод 8 соединен с корпусом микросхемы. Для изоляции и обеспечения хорошего теплового контакта с радиатором (корпусом БП) оптимально применение кусочка слюды и пасты ТПП-8.

Конденсаторы C1, С2, должны быть соединены с выводом 15 микросхемы проводниками длиной не более 70 мм. Это требование касается и длины печатных проводников платы, если конденсаторы смонтированы на печатной плате.

Емкость конденсатора С4 не должна быть слишком большой в связи с возможностью срабатывания защиты микросхемы при броске тока в момент включения БП. Обычно, достаточно 50 — 100 мкФ.

Справочник. Полупроводниковые приборы. И.В.Новаченко, В.М.Петухов, И.П.Блудов, А.В.Юровский. Микросхемы для бытовой радиоаппаратуры. Изд-е второе, стереотипное. М., «КУбКа», 1996, с. 35 -38.

голоса
Рейтинг статьи
Ссылка на основную публикацию