Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатор напряжения с источником тока

Стабилизация тока. Двухполюсный стабилизатор, источник, генератор. Преобразователь напряжение — ток. Интегральная микросхема. Двухполюсник. Схема, расчет. Рассчитать. Двуполюсник.

Двухполюсный источник тока. Преобразователь напряжение — ток. Схема, расчет (10+)

Источник тока. Принцип действия. Расчет — Источник тока — двухполюсник. Преобразователь напряжение — ток

1 2 3

Теперь приведу два варианта двухполюсного стабилизатора тока. Именно такие чаще всего нужны для проектирования радиоэлектронных устройств. Такие источники тока можно применять, например, в генераторе треугольного сигнала.

Стабилизация тока интегральным стабилизатором напряжения

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Эта схема основана на интегральном стабилизаторе напряжения. Интегральный стабилизатор включен таким образом, чтобы стабилизировать напряжение напряжение на резисторе R1. А это означает стабильный ток через схему.

У приведенного источника тока есть серьезный недостаток. Ток через цепь управления (ножка C) добавляется к стабильному току. Этот ток не стабилен и портит характеристики устройства. Минимальное падение напряжения на таком источнике тока равно сумму напряжения стабилизации микросхемы и минимально возможного падения напряжения на этой микросхеме. Сейчас промышленность выпускает интегральные стабилизаторы с очень маленьким током управления (десятки микроампер), низким напряжением стабилизации и маленьким падением напряжения на самой микросхеме. Лично мне удавалось изготовить стабилизатор тока по этой схеме на 10 мА с минимальным падением в 3 Вольта.

[Ток стабилизации, мА] = [Ток управления, мА] + [Напряжение стабилизации, В] / [Сопротивление резистора R1, кОм]

Двухполюсный источник тока на транзисторах

Я обычно использую другую схему, которую считаю венцом инженерной мысли.

Схема представляет собой включенные встречно два стабилизатора тока. Причем каждый источник тока питает цепь, задающую опорное напряжение для (стабилитрон) второго. Ток распределяется примерно поровну между этими источниками. На схеме некоторые пары радиодеталей обозначены одинаково. Они действительно должны быть идентичны. Резистор R2 для текущей работы схемы не нужен. Но без него она не запускается. Его выбираем 1 — 2 МОм. Резистор R3 влияет на характеристики устройства, в частности на стабильность тока при изменении напряжения. Его можно вообще не ставить. Но если нужно получить хорошую стабильность, то нужно подбирать, начиная с 3 МОм в сторону понижения.

Стабилитроны VD1 выбираются на 3.6 Вольта. Они должны быть рассчитаны на ток, равный половине тока стабилизации.

[Ток стабилизации, мА] = 2 * ([Напряжение стабилизации стабилитрона, В] — Напряжение насыщения база — эмиттер, В]) / [Сопротивление резистора R1, кОм]

[Минимальное падение напряжения, В] = 2 * [Напряжение стабилизации стабилитрона, В] — Напряжение насыщения база — эмиттер, В]

Применяя стабилитроны, рассчитанные на малые токи стабилизации, можно получить источник очень хороший малого тока.

Преобразователь напряжение — ток

Под преобразователем напряжение — ток обычно понимают схему, которая на выходе обеспечивает стабильный ток, пропорциональный входному напряжению.

Управляющее напряжение подается на базу транзистора, ток снимается с коллектора. Не смотря на простоту, схема имеет хорошие характеристики. Единственное, на что стоит обратить внимание, это — выходное сопротивление источника управляющего напряжения. Этот конвертер довольно сильно нагружает источник управляющего напряжения.

[Ток через устройство, мА] = ([Управляющее напряжение, В] — Напряжение насыщения база — эмиттер, В]) / [Сопротивление резистора, кОм]

[Ток в цепи управления, мА] = [Ток через устройство, мА] / [Коэффициент передачи тока транзистора, мА]

1 2 3

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Транзисторный аналог тиристора (динистора / тринистора). Имитатор, эму.
Схема аналога тиристора (диодного и триодного) на транзисторах. Расчет параметро.

Усилитель / Генератор синусоиды на тиристоре (динисторе, тринисторе, с.
Схемы усилителя и генератора синусоидального сигнала на тиристоре в нестандартно.

Стабилизатор напряжения

Материал из Википедии — свободной энциклопедии
У этого термина существуют и другие значения, см. Стабилизатор.

Читайте так же:
Пусковой ток стабилизаторов напряжения

Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при значительно больших колебаниях входного напряжения и сопротивления нагрузки.

По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного тока и переменного тока. Как правило тип питания (постоянный либо переменный ток) такой же, как и выходное напряжение, хотя возможны исключения.

Содержание

1 Стабилизаторы постоянного тока
1.1 Линейный стабилизатор
1.1.1 Параллельный параметрический стабилизатор на стабилитроне
1.1.2 Последовательный стабилизатор на биполярном транзисторе
1.1.3 Последовательный компенсационный стабилизатор с применением операционного усилителя
1.2 Импульсный стабилизатор
2 Стабилизаторы переменного напряжения
2.1 Феррорезонансные стабилизаторы
2.2 Современные стабилизаторы
3 См. также
4 Литература
5 Ссылки
6 Примечания

Стабилизаторы постоянного тока

Линейный стабилизатор

Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin — Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, то есть должен быть установлен на радиатор нужной площади. Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых деталей.
В зависимости от расположения элемента с изменяемым сопротивлением линейные стабилизаторы делятся на два типа:

Последовательный: регулирующий элемент включен последовательно с нагрузкой.
Параллельный: регулирующий элемент включен параллельно нагрузке.

В зависимости от способа стабилизации:

Параметрический: в таком стабилизаторе используется участок ВАХ прибора, имеющий большую крутизну.
Компенсационный: имеет обратную связь. В нём напряжение на выходе стабилизатора сравнивается с эталонным, из разницы между ними формируется управляющий сигнал для регулирующего элемента.

Параллельный параметрический стабилизатор на стабилитроне

Применяется для стабилизации напряжения в слаботочных схемах, так как для нормальной работы схемы ток через стабилитрон D1 должен в несколько раз (3-10) превышать ток в стабилизируемой нагрузке RL. Часто такая схема линейного стабилизатора применяется как источник опорного напряжения в более сложных схемах стабилизаторов. Для снижения нестабильности выходного напряжения, вызванной изменениями входного напряжения, вместо резистора RV применяется источник тока. Однако эта мера не уменьшает нестабильность выходного напряжения, вызванную изменением сопротивления нагрузки.

Последовательный стабилизатор на биполярном транзисторе


Uout = Uz — Ube.

По сути, это рассмотренный выше параллельный параметрический стабилизатор на стабилитроне, подключённый ко входу эмиттерного повторителя. В нём нет цепей обратной связи, обеспечивающих компенсацию изменений выходного напряжения.

Его выходное напряжение меньше напряжения стабилизации стабилитрона на величину Ube, которая практически не зависит от величины тока, протекающего через p-n переход, и для приборов на основе кремния приблизительно составляет 0,6В. Зависимость Ube от величины тока и температуры ухудшает стабильность выходного напряжения, по сравнению с параллельным параметрическим стабилизатором на стабилитроне.

Эмиттерный повторитель (усилитель тока) позволяет увеличить максимальный выходной ток стабилизатора, по сравнению с параллельным параметрическим стабилизатором на стабилитроне, в β раз (где β — коэффициент усиления по току данного экземпляра транзистора). Если этого недостаточно, применяется составной транзистор.

При отсутствии сопротивления нагрузки (или при токах нагрузки микроамперного диапазона), выходное напряжение такого стабилизатора (напряжение холостого хода) возрастает на 0,6В за счёт того, что Ube в области микротоков становится близким к нулю. Для преодоления этой особенности, к выходу стабилизатора подключают балластный нагрузочный резистор, обеспечивающий ток нагрузки в несколько мА.

Последовательный компенсационный стабилизатор с применением операционного усилителя

Часть выходного напряжения Uout, снимаемая с потенциометра R2, сравнивается с опорным напряжением Uz на стабилитроне D1. Разность напряжений усиливается операционным усилителем U1 и подаётся на базу регулирующего транзистора, включенного по схеме эмиттерного повторителя[1]. Для устойчивой работы схемы петлевой сдвиг фазы должен быть близок к 180°+n*360°. Так как часть выходного напряжения Uout подаётся на инвертирующий вход операционного усилителя U1, то операционный усилитель U1 сдвигает фазу на 180°, регулирующий транзистор включен по схеме эмиттерного повторителя, который фазу не сдвигает. Петлевой сдвиг фазы равен 180°, условие устойчивости по фазе соблюдается.

Читайте так же:
Таймер для двигателя постоянного тока

Опорное напряжение Uz практически не зависит от величины тока, протекающего через стабилитрон, и равно напряжению стабилизации стабилитрона. Для повышения его стабильности при изменениях Uin, вместо резистора RV применяется источник тока.

В данном стабилизаторе, операционный усилитель фактически включён по схеме неинвертирующего усилителя (с эмиттерным повторителем, для увеличения выходного тока). Соотношение резисторов в цепи обратной связи задают его коэффициент усиления, который определяет, во сколько раз выходное напряжение будет выше входного (то есть опорного, поданного на неинвертирующий вход ОУ). Поскольку коэффициент усиления неинвертирующего усилителя всегда больше единицы, величина опорного напряжения (напряжение стабилизации стабилитрона) должна быть выбрана меньше требуемого минимального выходного напряжения.

Нестабильность выходного напряжения такого стабилизатора практически полностью определяется нестабильностью опорного напряжения, за счёт большого коэффициента петлевого усиления современных ОУ (Gopenloop = 105 ÷ 106).

Для исключения влияния нестабильности входного напряжения на режим работы самого ОУ, он может запитываться стабилизированным напряжением (от дополнительных параметрических стабилизаторов на стабилитроне).

Импульсный стабилизатор

Основная статья: Импульсный стабилизатор напряжения

В импульсном стабилизаторе ток от нестабилизированного внешнего источника подаётся на накопитель (обычно конденсатор или дроссель) короткими импульсами; при этом запасается энергия, которая затем высвобождается в нагрузку в виде электрической энергии, но, в случае дросселя, уже с другим напряжением. Стабилизация осуществляется за счёт управления длительностью импульсов и пауз между ними — широтно-импульсной модуляции. Импульсный стабилизатор, по сравнению с линейным, обладает значительно более высоким КПД. Недостатком импульсного стабилизатора является наличие импульсных помех в выходном напряжении.

В отличие от линейного стабилизатора, импульсный стабилизатор может преобразовывать входное напряжение произвольным образом (зависит от схемы стабилизатора):

Понижающий стабилизатор: выходное стабилизированное напряжение всегда ниже входного и имеет ту же полярность.
Повышающий стабилизатор: выходное стабилизированное напряжение всегда выше входного и имеет ту же полярность.
Повышающе-понижающий стабилизатор: выходное напряжение стабилизировано, может быть как выше, так и ниже входного и имеет ту же полярность. Такой стабилизатор применяется в случаях, когда входное напряжение незначительно отличается от требуемого и может изменяться, принимая значение как выше, так и ниже необходимого.
Инвертирующий стабилизатор: выходное стабилизированное напряжение имеет обратную полярность относительно входного, абсолютное значение выходного напряжения может быть любым.

Стабилизаторы переменного напряжения

Основная статья: Стабилизаторы переменного напряжения

Феррорезонансные стабилизаторы

Во времена СССР получили широкое распространение бытовые феррорезонансные стабилизаторы напряжения. Обычно через них подключали телевизоры. В телевизорах первых поколений применялись сетевые блоки питания с линейными стабилизаторами напряжения (а некоторые цепи и вовсе питались нестабилизированным напряжением), которые не всегда справлялись с колебаниями напряжения сети, особенно в сельской местности, что требовало предварительной стабилизации напряжения. С появлением телевизоров 4УПИЦТ и УСЦТ, имевших импульсные блоки питания, необходимость в дополнительной стабилизации напряжения сети отпала.

Феррорезонансный стабилизатор состоит из двух дросселей: с ненасыщаемым сердечником (имеющим магнитный зазор) и насыщенным, а также конденсатора. Особенность ВАХ насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него. Подбором параметров дросселей и конденсаторов можно обеспечить стабилизацию напряжения при изменении входного напряжения в достаточно широких пределах, но незначительное отклонение частоты питающей сети очень сильно влияло на характеристики стабилизатора.

Современные стабилизаторы

В настоящее время основными типами стабилизаторов являются:

электродинамические
сервоприводные (механические)
электронные (ступенчатого типа)
статические (электронные переключаемые)
релейные
компенсационные (электронные плавные)
комбинированные (гибридные)

Модели производятся как в однофазном (220/230 В), так и трёхфазном (380/400 В) исполнении, мощность их от нескольких сотен ватт до нескольких мегаватт. Трёхфазные модели выпускаются двух модификаций: с независимой регулировкой по каждой фазе или с регулировкой по среднефазному напряжению на входе стабилизатора.

Выпускаемые модели также различаются по допустимому диапазону изменения входного напряжения, который может быть, например, таким: ±15 %, ±20 %, ±25 %, ±30 %, −25 %/+15 %, −35 %/+15 % или −45 %/+15 %. Чем шире диапазон (особенно в отрицательную сторону), тем больше габариты стабилизатора и выше его стоимость при той же выходной мощности.

Читайте так же:
Lm338 стабилизатор тока схема 1

Важной характеристикой стабилизатора напряжения является его быстродействие, то есть чем выше быстродействие, тем быстрее стабилизатор отреагирует на изменения входного напряжения. Быстродействие это промежуток времени (миллисекунды) за которое стабилизатор способен изменить напряжение на один вольт. У разного типа стабилизаторов разная скорость быстродействия, например у электродинамических быстродействие 8…10 мс/В, статические стабилизаторы обеспечат 2 мс/В, а вот у электронных, компенсационного типа этот параметр 0,75 мс/В.[источник не указан 1624 дня]

Ещё одним важным параметром является точность стабилизации выходного напряжения. Согласно ГОСТ 13109-97 предельно допустимое отклонение напряжения питания ±10 % от номинального. Точность современных стабилизаторов напряжения колеблется в диапазоне от 0,5 % до 8 %. Точности в 8 % вполне хватает для обеспечения исправной работы подавляющего большинства современной бытовой и промышленной электротехники оборудованных инверторными и импульсными блоками питания. Так как мощность оборудования напрямую зависит от напряжения, то для обеспечения корректной (заявленной производителем) работы с прогнозируемым результатом и расходом электроэнергии необходимо точное напряжения (0,5-1 %). Так же более жесткие требования (1 %) предъявляются для питания сложного оборудования (медицинское, высокотехнологичное и подобное). Важным потребительским параметром является способность стабилизатора работать на заявленной мощности во всем диапазоне входного напряжения, но далеко не все стабилизаторы соответствуют этому параметру. КПД электродинамических и сервоприводных стабилизаторов более 98 %, а электронных (ступенчатых) 96 %. Электродинамические стабилизаторы выдерживают десятикратные перегрузки, при покупке такого стабилизатора запас по мощности не требуется.
См. также

Микросхемы серии 78xx — серия распространённых линейных стабилизаторов
Регулятор мощности
Инверторы напряжения

Литература

Вересов Г.П. Электропитание бытовой радиоэлектронной аппаратуры. — М.: Радио и связь, 1983. — 128 с.
В.В. Китаев и др Электропитание устройств связи. — М.: Связь, 1975. — 328 с. — 24 000 экз.
Костиков В.Г. Парфенов Е.М. Шахнов В.А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3.
Штильман В. И. Микроэлектронные стабилизаторы напряжения. — Киев: Технiка, 1976.

Ссылки

Стабилизатор электрический — статья из Большой советской энциклопедии
ГОСТ Р 52907-2008 «Источники электропитания радиоэлектронной аппаратуры. Термины и определения»

Стабилизаторы напряжения

Стабилизатор напряжения — прибор, который обеспечивает стабильный уровень напряжения, автоматически компенсируя изменения напряжения источника и сопротивления нагрузки. Существует два основных типа стабилизаторов напряжения: параллельные стабилизаторы и последовательные стабилизаторы.

Стабилизация — термин, применяемый для выражения того, насколько хорошо источник электропитания поддерживает постоянное напряжение, подаваемое к нагрузке, независимо от изменений напряжения на входе источника и сопротивления нагрузки. Многие типы электронного оборудования для нормальной работы требуют стабильного уровня напряжения.

Стабилизатор напряжения

Параллельный стабилизатор напряжения

Стабилизатор, установленный параллельно нагрузке. Параллельный стабилизатор состоит из стабилитрона (VR1), ограничивающего ток сопротивления (R1) и сопротивления нагрузки (RL). Сопротивление нагрузки установлено параллельно стабилитрону.

Схема параллельного стабилизатора, соединённого с мостовым выпрямителем

Стабилитрон предназначен для работы с конкретным напряжением, известным как напряжение туннельного пробоя p-n-перехода. Поскольку стабилитрон — активный элемент, он может менять своё внутреннее сопротивление. Изменения в прохождении тока через стабилитрон не изменяют падение напряжения в нём. Ограничивающее ток сопротивление, установленное в последовательности со стабилитроном, ограничивает величину тока, которое протекает через стабилитрон, и предохраняет его от повреждений. Падение напряжения в стабилитроне фиксируется посредством самой конструкции стабилитрона и остаётся относительно постоянным. Часть напряжения от источника, которая не снижается стабилитроном, снижается ограничивающим сопротивлением. Поскольку стабилитрон установлен параллельно сопротивлению нагрузки, напряжение через RL будет равно падению напряжения на стабилитроне.

Последовательный стабилизатор

Это стабилизатор, установленный последовательно по отношению к нагрузке. Последовательный стабилизатор состоит из стабилитрона (VR1), ограничивающего ток сопротивления (R1), и сопротивления нагрузки (RL).

Читайте так же:
Стабилизатор тока для разрядки аккумуляторов

Стабилитрон и ограничивающее ток сопротивление соединены последовательно, чтобы образовался делитель напряжения. База транзистора подсоединена к делителю напряжения. Контур транзистора «эмиттер-коллектор» соединён последовательно с сопротивлением нагрузки.

Схема последовательного стабилизатора, соединённого с мостовым выпрямителем

Поскольку транзистор в последовательном стабилизаторе напряжение, воздействующее на базу транзистора, равно падению напряжения в стабилитроне. Этот потенциал положителен относительно эмиттера транзистора. Так как стабилитрон поддерживает падение напряжения на постоянном уровне, потенциал, воздействующий на базу транзистора, будет оставаться постоянным.

Последовательный стабилизатор поддерживает постоянный уровень напряжения, подаваемого на нагрузку, изменяя величину падения напряжения в транзисторе. Возрастание тока через нагрузку может быть вызвано либо повышением напряжения источника питания, либо снижением сопротивления нагрузки. Когда ток возрастает, возрастает также и падение напряжения на нагрузке. В результате, напряжение, приложенное к эмиттеру транзистора, возрастает, делая его более положительным. Это означает, что разность электрических потенциалов между эмиттером и базой становится меньше, поэтому возрастает внутреннее сопротивление транзистора.

Компенсационные стабилизаторы

Компенсационные стабилизаторы напряжения позволяют получить постоянное напряжение с минимальным значением пульсаций и шума, поэтому эти стабилизаторы применяются в узлах радиоаппаратуры, наиболее чувствительных к помехам. Более того! Если раньше в радиоэлектронном устройстве применялся один источник стабильного напряжения, а потребители разделялись пассивными RC фильтрами, то теперь экономически выгоднее вместо фильтрующих RC-цепочек поставить интегральные стабилизаторы напряжения.

Следует отметить, что при написании этой статьи я решал непростую дилемму. С одной стороны в настоящее время на рынке предлагается огромное количество готовых микросхем стабилизаторов напряжения. С другой стороны для правильного выбора и применения этих микросхем нужно понимать как они работают. Именно поэтому сначала познакомимся с принципами работы компенсационного стабилизатора, а только потом рассмотрим особенности применения готовых микросхем. Структурная схема компенсационного стабилизатора приведена на рисунке 1.


Рисунок 1. Структурная схема компенсационного стабилизатора напряжения

Стабилизация выходного напряжения в компенсационном стабилизаторе происходит при помощи отрицательной обратной связи. Выходное напряжение может измениться под влиянием входного напряжения или изменения тока нагрузки. Оно сравнивается с опорным высокостабильным напряжением и при несовпадении осуществляется его подстройка под заданное значение.

В процессе работы компенсационного стабилизатора транзистор, который применяется в качестве регулировочного элемента, изменяет свое внутреннее сопротивление. На этом сопротивлении по закону Ома осуществляется падение напряжения ΔUРЭ. При этом напряжение падает ровно настолько, чтобы на выходе получилось требуемое напряжение питания. Это означает, что при применении компенсационного стабилизатора входное напряжение всегда должно быть больше выходного.

В схеме, приведенной на рисунке 1, коэффициент передачи элемента регулирования Kр определяет зависимость выходного напряжения от входного. Для хорошего стабилизатора чем меньше будет этот коэффициент, тем лучше. Пульсации входного напряжения не смогут пройти на выход стабилизатора. Поэтому в элементе регулировки обычно входное напряжение подается на коллектор биполярного транзистора или сток полевого транзистора. Эталонное напряжение Uэт обычно не совпадает с выходным напряжением стабилизатора, поэтому между его выходом и схемой сравнения ставится делитель напряжения с коэффициентом деления Kд. Для получения необходимого коэффициента стабилизации между устройством сравнения и регулирующим транзистором ставится усилитель постоянного тока, который усиливает сигнал ошибки ΔUE. Общий коэффициент петлевого усиления в данной схеме можно определить следующим образом:

(1)

Принцип работы компенсационного стабилизатора лучше пояснить по принципиальной схеме. Подобная схема, выполненная на двух транзисторах, приведена на рисунке 2.


Рисунок 2. Принципиальная схема простейшего компенсационного стабилизатора напряжения

В этой схеме в качестве регулирующего элемента использован транзистор VT1, включенный по схеме с общим коллектором. Схема сравнения реализована на транзисторе VT2. Ток этого транзистора зависит от разности напряжений между базой и эмиттером. В качестве эталонного источника напряжения применен параметрический стабилизатор на резисторе R1 и стабилитроне VD1. Выходное напряжение поступает на базу транзистора VT2 через делитель напряжения R3, R4.

Если напряжение на выходе стабилизатора по каким либо причинам возросло, то транзистор VT2 приоткрывается и напряжение на его коллекторе уменьшается. К коллектору VT2 подключена база транзистора VT1, следовательно, уменьшится и напряжение на выходе стабилизатора (вернется к заданному значению). Аналогичным образом схема отрицательной обратной связи отработает и при уменьшении напряжения на выходе.

Читайте так же:
Стабилизатор напряжения переменного тока ресанта инструкция

Следует заметить, что от транзистора VT1 требуется обеспечивать большой коэффициент усиления по току, поэтому в современных стабилизаторах, таких как иностранные микросхемы 7805 или КР142ЕН5 отечественного производства, в качестве этого транзистора применяется составной транзистор по схеме Дарлингтона.


Рисунок 3. Схема Дарлингтона

Коэффициент усиления усилителя, собранного на транзисторе VT2, сильно зависит от сопротивления R2. Чем больше будет это сопротивление, тем больше Kу, и, следовательно, коэффициент стабилизации. Кроме того, через это сопротивление на базу транзистора VT1 поступают пульсации входного напряжения Uвх. С этой точки зрения тоже следует увеличивать сопротивление резистора R2. Однако в результате может не хватить тока для работы транзисторов VT1 и VT2. Поэтому в современных стабилизаторах вместо обычного резистора применяются генераторы тока. Чаще всего токовое зеркало.


Рисунок 4. Принципиальная схема токового зеркала

В результате получается схема, подобная схеме стабилизатора с фиксированным выходным напряжением 7805. Конечно, существуют микросхемы стабилизаторов с регулируемым выходным напряжением, однако подобная функция приводит к усложнению схемы и снижению параметров стабилизатора, поэтому выгоднее подобрать готовый стабилизатор на необходимое напряжение.


Рисунок 5. Принципиальная схема компенсационного стабилизатора 7805

Несмотря на достаточно сложную внутреннюю схему, применять такой стабилизатор чрезвычайно просто. Его схема включения приведена на рисунке 6


Рисунок 6. Принципиальная схема стабилизатора, реализованного на микросхеме 7805

Микросхемы, выполненные по этой схеме выпускаются большинством ведущих фирм мира. В качестве примера можно назвать LM7805 фирм Texas Instruments, STMicroelectronics, Fairchild Semiconductor, способную выдавать выходной ток более 1,5 А. Имеется отечественный аналог — стабилизаторы КР142ЕН5В. В названии приведенной микросхемы стабилизатора цифры 78 означают, что это стабилизатор, а цифры 05 означают, что он формирует на выходе напряжение 5 В. Соответственно стабилизаторы 7803 будут формировать напряжение 3.3 В, микросхема 7809 сформирует на выходе напряжение 9В, микросхема 7812 обеспечит напряжение 12В.

Так как через силовой транзистор (элемент регулировки) протекает весь ток нагрузки, то на нем выделяется тепловая энергия, которую необходимо рассеять в окружающем пространстве. Поэтому обычно этот стабилизатор размещается на радиаторе. Для удобства крепления микросхема выполняется в специально разработанном корпусе TO-220, который даже без радиатора способен рассеять до 1 Вт тепла.


Рисунок 7. Примеры компенсационных стабилизаторов, выполненных на микросхеме 7805

В ряде случаев такой большой ток не требуется, поэтому были разработаны микросхемы маломощных стабилизаторов напряжения. Наиболее распространены микросхемы LM78L05. Эти микросхемы выпускаются в малогабаритных корпусах, таких как SOIC, SOT-89, DSBGA или TO-92. Отечественные малогабаритные стабилизаторы — КР1157. Их схема включения не отличается от схемы, приведенной на рисунке 6, но конструкция совершенно другая.


Рисунок 8. Примеры компенсационных стабилизаторов, выполненных на микросхеме 78L05

Как видно из приведенных примеров, компенсационные стабилизаторы нашли широкое применение в современных компьютерах, сотовых телефонах и рациях.

Дата последнего обновления файла 21.05.2019

Понравился материал? Поделись с друзьями!

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Компенсационный стабилизатор напряжения. Расчёт стабилизатора напряжения (meanders.ru)
  6. LDO-преобразователи с низким током собственного потребления и малым падением напряжения (compel.ru)
  7. Одноканальные LDO-стабилизаторы малой мощности компании Texas Instruments (rlocman.ru)
  8. 3 Pin 1.5A Fixed 5V Positive Voltage Regulator (ti.com)
  9. 1A LOW DROPOUT POSITIVE FIXED 2.5V REGULATOR (gaw.ru)

Вместе со статьей «Компенсационные стабилизаторы» читают:

голоса
Рейтинг статьи
Ссылка на основную публикацию