Schetchiksg.ru

Счетчик СГ
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатор тока для солнечной батареи

Стабилизатор тока для солнечной батареи

Импульсный стабилизатор напряжения в корпусе (v.6)

Характеристики

  1. Входное напряжение от 5В до 25В.
  2. Выходное стабилизированное напряжение:
    5.4В; 9.5В; 11.5В; регулируемое 3.5В. 15В.
  3. Выходной ток до 0.5А или 1.5А
    (выбирается джампером, внутренний ограничитель)
  4. Выбор отключения выходного напряжения при входном ниже 8В, 11В, 14В
  5. Индикация наличия выходного напряжения
  6. Входной разъем — «крокодилы» или круглый 5.5х2.1мм
  7. Выходной разъем — круглый 5.5х2.1мм, круглый 3.5х1.1 мм и USB.
  8. Защиты от перепутки полярности во входам и выходам.
  9. Защита USB и 3.5мм разъемов от повышения напряжения.
  10. Размеры 62х25х15 мм (без провода)
  11. Вес 32 г

На всех круглых разъёмах плюс в центре.

Импульсный понижающий стабилизатор напряжения позволяет получить стабильное напряжение для питания потребителей от различных источников (солнечные батареи, адаптеры, аккумуляторы и т.д.).

За счет импульсного режима работы имеет высокий КПД (до 95% в зависимости от режима работы).

Выбор выходного напряжения осуществляется пользователем с помощью ДИП-переключателя.

Плавная регулировка выходного напряжения с помощью переменного резистора позволяет то напряжение на выходе, которое требуется с высокой точностью. Это важно, например, для безопасной зарядки литиевых аккумуляторов.

Встроенный ограничитель тока также служит для обеспечения безопасной зарядки аккумуляторов или маломощных потребителей.

Таким образом, с помощью данного стабилизатора можно как запитать большинство мобильных устройств (в том числе спутниковых телефонов), так и непосредственно заряжать различные типы аккумуляторов (никелевых, литиевых, свинцовых).

Может быть использован в качестве драйвера для питания мощный светодиодов.

Описание и инструкция по эксплуатации

Импульсный стабилизатор напряжения (v.6)

Назначение. Стабилизатор напряжения предназначен для получения стабильного напряжения для питания широкого круга потребителей. Источником питания для его работы служит любой источник постоянного напряжения от 5В до 25В, например, солнечная батарея, аккумулятор и т.д.
Стабилизатор имеет внутренний ограничитель тока, что позволяет его использовать для зарядки различных типов аккумуляторов.
Конструкция и работа. Стабилизатор построен на основе импульсного понижающего преобразователя. Это позволяет получать высокий КПД преобразования при работе от различных источников входного напряжения. Высокий КПД особенно важен при работе с солнечными батареями, поскольку их выходные мощности невелики и необходимо максимально экономично преобразовывать отдаваемую ими энергию.
Выходное напряжение в понижающем стабилизаторе всегда ниже, чем на его входе. Минимальная разница около 0.5В.
Джамперы.
На рисунке ниже показано расположение джамперов, с помощью которых можно задавать различные режимы работы стабилизатора.

Читайте так же:
Как работает стабилизатор переменного тока

Связаться с нами можно по телефону 8.916.328-9271 (Николай), или по электронной почте

Простой стабилизатор для солнечной панели

Стабилизаторы для солнечных батарей весьма разнообразны. Самый простой тип стабилизатора – шунтовой. Он имеет следующие преимущества: простота, низкая рассеиваемая мощность, низкая стоимость, высокая надежность. Но в обмен на эти преимущества приходится мириться с тем, что напряжение на батарее постоянно изменяется, то вверх, то вниз, что аккумулятор переключается, то в режим зарядки полным током, то в состояние отсутствия зарядного тока, и, что постоянные переключения приводят к импульсным помехам на выходе стабилизатора. В зависимости от назначения, необходимо выбрать наиболее подходящий тип стабилизатора. В большинстве солнечных установок я использовал линейные стабилизаторы, который имеют преимущества плавного регулирования напряжения и крайне небольших выбросов напряжения на нагрузке. Правда, они имеют и существенные недостатки: более высокую стоимость, большие размеры и высокую рассеиваемую мощность. Но когда меня попросили сделать солнечный стабилизатор для яхты, который обслуживает только одну солнечную панель на 3.1 ампера, и подключается к аккумуляторной батарее на 300 A·ч, лучше было использовать маленькое и простое устройство, чем линейный стабилизатор. Так что я спроектировал и изготовил именно такой стабилизатор. Вы также можете применить его для таких случаев, когда мощность солнечных батарей довольно мала в сочетании с относительно большой емкостью аккумулятора, или когда низкая стоимость, простота конструкции и высокая надежность являются более важными, чем стабильность линейного регулирования.

Стабилизатор был собран на макетной плате и смонтирован в герметичном пластмассовом корпусе, который, в свою очередь, был установлен на алюминиевой монтажной пластине. Клеммы изготовлены из латуни. Такая конструкция устройства использована, чтобы противостоять суровой морской среде и небрежному обращению.

Схема

Если солнечная панель не генерирует энергию, вся схема отключена и не потребляет от аккумулятора абсолютно никакого тока. Когда солнце встает, и панель начинает выдавать не менее 10 В, включаются индикаторный светодиод и два маломощных транзистора. Устройство начинает работать. Пока напряжение батареи остается ниже 14 В, операционный усилитель (он имеет очень низкое потребление тока) будет держать MOSFET транзистор закрытым, так что ничего особенного не случится, и ток от солнечной панели будет проходить через диод Шоттки на батарею.

Когда напряжение батареи достигнет значения, равного 14.0 В, операционный усилитель U1 откроет MOSFET транзистор. Транзистор будет шунтировать солнечную панель (для нее это совершенно безопасно), аккумулятор перестанет получать ток заряда, индикатор погаснет, два маломощных транзистора закроются, и конденсатор С2 медленно разрядится. После истечения примерно 3 секунд, конденсатор С2 разрядится достаточно, чтобы преодолеть гистерезис микросхемы U1, которая снова закроет MOSFET транзистор. Теперь схема снова будет заряжать аккумулятор, пока его напряжение вновь не достигнет уровня переключения. Таким образом, устройство работает циклично, каждый период включения полевого транзистора длится 3 секунды, а каждый из периодов заряда аккумулятора длится столько, сколько необходимо для достижения напряжения 14.0 В. Длительность этого периода будет меняться в зависимости от зарядного тока аккумулятора и мощности подключенной к нему нагрузки.

Читайте так же:
Как сделать стабилизатор тока для зарядного устройства

Минимальное время включения схемы определяется временем заряда конденсатора С2 током, ограниченным транзистором Q3 примерно до 40 мА. Эти импульсы могут быть очень короткими.

Конструкция

Конструкция схемы очень проста. Все компоненты довольно доступны, и большинство из них могут быть легко заменены другими сходными компонентами. Я бы не советовал заменять TLC271 или LM385-2.5, если вы не уверены в правильности замены. Обе эти микросхемы – маломощные приборы, и их потребление непосредственно определяет время выключения стабилизатора. Если вы используете микросхемы, которые имеют другое энергопотребление, необходимо изменить емкость конденсатора С2, подобрать смещение транзистора Q3, но может, даже это не поможет правильно настроить схему.

MOSFET транзистор может быть заменен любым другим с достаточно низким сопротивлением открытого канала, чтобы оно позволяло эффективно шунтировать солнечную панель. Диод D2 также может быть любым, способным выдержать максимальный ток солнечной панели. Применение диода Шоттки предпочтительнее, потому что на нем будет падать вдвое меньшее напряжение, чем на стандартном кремниевом, и такой диод будет в два раза меньше греться. Стандартный диод подходит, если правильно размещен и смонтирован. С приведенными на схеме компонентами стабилизатор может работать с солнечными панелями с током до 4 А. Для более крупных панелей необходимо заменить лишь MOSFET транзистор и диод более мощными. Остальные компоненты схемы останутся прежними. Радиатор для управления 4 А панелью не требуется. Но если поставить MOSFET на подходящий теплоотвод, схема сможет работать с существенно более мощной панелью.

Резистор R8 в этой схеме равен 92 кОм, что является нестандартным значением. Я предлагаю, чтобы вы использовали включенные последовательно резисторы 82 кОм и 10 кОм, это проще, чем пытаться найти специальный резистор. Резисторы R8, R10 и R6 определяют напряжение отсечки, так что лучше, если они будут точными. Я использовал 5% резисторы, но если Вы хотите повысить надежность устройства, используйте 1% резисторы или выберите наиболее точные из 5% с помощью цифрового омметра. Вы можете также использовать подстроечный резистор, и таким образом, регулировать напряжение, но я бы не советовал этого делать, если Вы хотите получить высокую надежность в агрессивной среде. Подстроечные резисторы просто выходят из строя в таких условиях.

Читайте так же:
Параметрический стабилизатор ток стабилитрона

Перевод: Андрей Гаврилюк по заказу РадиоЛоцман

Простейшее зарядное устройство на солнечных батареях

Автору пришла идея создать зарядное устройство для своего телефона на основе солнечной батареи. Обычно для того, чтобы зарядить мобильный телефон требуется постоянное напряжение в 5 В. Напряжение вырабатываемое от солнечных батарей не постоянное и во многом зависит от освещенности. Поискав выход из данной ситуации автор обратил внимание на стабилизатор напряжения КР142ЕН5А, который позволит питать аккумулятор телефона от энергии сообщаемой солнечной батареей.

Материалы необходимые для создания зарядного устройства на основе солнечной батареи:

1) солнечные батареи с напряжением по 3В 2 штуки
2) стабилизатор напряжения на 5 В, в данном случае микросхема КР142ЕН5А
3) USB разъем для кабеля питания телефона
4) провода
5) припой
6) термоклей
7) паяльник

Рассмотрим основные моменты создания данного устройства.

Стабилизатор КР142ЕН5А является зарубежным аналогом L7805CV, их вы можете заказать через интернет или посмотреть в магазине радиодеталей своего города. Главное достоинство подобного стабилизатора заключено в том, что при подаче на вход напряжения от 5 В до 15 В, он выводит стабильные 5 В.

Это в свою очередь означает возможность использования солнечной панели с вырабатываемым напряжением от 5 В до 15 В соответственно диапазону работы стабилизатора.

Однако у данной схемы есть и минус, который заключается в том, что если подаваемое напряжение от солнечной батареи будет меньше 5 В , то устройство не будет заряжать аккумулятор телефона.

Автор отмечает, что очень важно не перепутать контакты микросхемы и USB разъема при пайке.

У автора имелись две солнечные батареи с рабочим напряжением в 3 В. Так как для работы устройства необходимо напряжением минимум в 5 В, то автор просто соединил эти две батареи последовательно.

Читайте так же:
Стабилизатор тока схема tl431 1

После чего была произведена пайка всех элементов в одну схему.

Далее на микросхему был нанесен термоклей, и она была приклеена на обратную сторону солнечной панели.

После сборки устройства автор провел испытания его работы на телефоне. Солнечная батарея была помещена под свет, к ней был подключен мобильный телефон через USB разъем.

Как правильно использовать солнечную батарею

  1. Солнечная батарея 8 Вт;
  2. Накопительный аккумулятор;
  3. Импульсный стабилизатор напряжения.

Солнечная батарея подключена непосредственно к аккумулятору, что позволяет исключить потери на работу схемы его зарядки. Остаются только потери «в химии», около 15%.

Стабилизатор подключается к контактам аккумулятора и питает нагрузку. Естественно, зарядка и питание потребителей могут выполняться одновременно.

В качестве аккумулятора можно использовать либо свинцовый гелевый на 12В, либо пачку пальчиков АА, в количестве 10 шт. Почему 10-ти, а не 8-ми? В основном, для безопасности. Десять последовательно включенных аккумуляторов имеют напряжение в конце зарядки около 14.5 В, а при таком напряжении 12-ти вольтная солнечная батарея уже не может «протолкнуть» в них большой ток и он резко снижается до безопасного по мере заряда, что позволяет также выполнять дополнительную балансировку аккумуляторов. Т.о., процесс заряда самостоятельно и безопасно прекращается, без необходимости в каких-либо внешних зарядниках.

Недостатком использования такой пачки аккумуляторов является то, что из-за разницы в реальных ёмкостях, аккумуляторы с меньшей ёмкостью будут «изнашиваться» быстрее остальных, особенно, при глубоких разрядах. Поэтому желательно периодически проверять их состояние, измеряя напряжение на каждом аккумуляторе.

Вторым недостатком, впрочем, весьма относительным, такого набора можно считать желательность использования солнечной батареи именно на 12В. Но эти батареи имеют примерно вдвое большие размеры в сложенном виде, чем 6-ти Ваттные.

Основных же достоинств у такого набора три.

  1. Меньшая стоимость электроники по сравнению со вторым вариантом, хотя, с учётом стоимости аккумуляторов, разница уже не будет слишком велика.
  2. Важнее, большой отдаваемый ток на относительно высоких напряжениях. Причём ток можно легко увеличить, используя большее количество стабилизаторов.
  3. Буферный аккумулятор имеет стандартное автомобильное напряжение (9…14 В), поэтому к нему можно без труда подключать любые адаптеры для устройств, работающие от прикуривателя. (Лишь бы они не потребляли ток, больший, чем может отдать аккумулятор)

Второй пункт актуален тем, кто использует видеокамеры, либо некоторые виды спутниковых телефонов, которые питаются от напряжений 8.4 В и более, потребляя при этом ток больше 1 А. Импульсный стабилизатор имеет выходной ток до 1.5А и ему не важно, отдаётся ли этот ток при выходном напряжении 5 В или 10 В (в отличие от «Вампирчика», внутри которого стоит дополнительный ограничитель выходной мощности), поэтому стабилизатор легко справляется с таким током на «высоких» напряжениях.

Читайте так же:
Схема стабилизатора тока при зарядке аккумулятора

Кстати, попытка запитать различные зарядники для аккумуляторов (работающие от прикуривателя), например, для NiCd-NiMh пальчиков или литиевых, только от солнечной батареи без буферного аккумулятора, обычно заканчивается неудачей. К сожалению, большинство таких ЗУ потребляют ток импульсами, и, получается, что, хотя средний потребляемый ток вроде бы и небольшой, но во время импульса солнечная батарея с ним не справляется и ЗУ отключается. А буферный аккумулятор сглаживает эти броски тока и зарядка идёт нормально.

Второй набор рассчитан на пользователя с минимальной подготовкой и не желающего работать руками.

  1. Солнечная батарея 6 Вт или 8 Вт;
  2. Накопитель «Вампирчик».

Любая из этих батарей просто подключается напрямую к «Вампирчику», и он сам уже следит за зарядкой. Пользователю остаётся только подключиться к его выходу для питания своих устройств.

Минусы:

  1. Недостаточная для некоторых устройств выходная мощность на «высоких» напряжениях. «Вампирчик» заряжает практически всех потребителей использующих 5 В — это все КПК, сотовые и т.д. Но для видеокамер его выходного тока уже может не хватить.
  2. Большие потери, примерно процентов на двадцать, по сравнению с первой схемой, т.к. присутствуют дополнительные преобразования.
  3. Использование автоадаптеров на его выходе возможно, но не слишком логично, т.к. получается слишком много преобразований и, следовательно, потерь.

Плюсы:

  • Простота и компактность, минимум проводов.
  • Не нужно контролировать аккумуляторы.

Выводы.

Как видно из обзора, использование «голой» солнечной батареи заставляет завышать её мощность и при этом зарядка гаджетов в реальных условиях эксплуатации всё равно не гарантируется.

Использование электроники не просто желательно, а, во многих случаях, обязательное условие безопасной зарядки сложных потребителей. Да и вообще, самой возможности такой зарядки.

Буферный аккумулятор (накопитель) позволяет снизить требования к мощности солнечной батареи в несколько раз. А также обеспечивает дополнительные удобства в эксплуатации.

голоса
Рейтинг статьи
Ссылка на основную публикацию