Стабилизатор тока напряжения 1 вольт схема
Блок питания 1…29 Вольт
Блок питания 1…29 Вольт
Во многих современных стабилизаторах для улучшения их качественных показателей используют операционные усилители, обладающие большим коэффициентом усиления и стабильными характеристиками. Однако относительно простая модификация традиционного по схеме транзисторного стабилизатора позволяет заметно улучшить его технические характеристики и избежать некоторых трудностей, возникающих при конструировании стабилизаторов с применением ОУ (особенно в устройствах с регулированием выходного напряжения в широких пределах). Высокий коэффициент стабилизации описываемого блока питания обусловлен усилителем с динамической нагрузкой
Источник образцового напряжения собран на полевом транзисторе, что дает возможность снизить выходное сопротивление стабилизатора и получить глубокое регулирование выходного напряжения.
Основные технические характеристики
- Напряжение на входе стабилизатора, Вольт 30
- Пределы регулирования выходного напряжения, Вольт 1…29
- Максимальный ток нагрузки, Ампер 2
- Коэффициент стабилизации напряжения, дБ 60
- Выходное сопротивление, мОм 0,5…10
- Температурная нестабильность выходного напряжении в интервале температуры 20…50* С, не более, % 0,5
Нестабильность выходного напряжения стабилизатора обычно складывается из нестабильности образцового напряжения и дрейфа ОУ. В описываемом стабилизаторе она определяется в основном только температурным дрейфом первого активного элемента.
Стабилизатор (см. схему) состоит из двух усилителей с динамической нагрузкой с последовательным управлением. Первый собран на транзисторах V13, V12, где V13 включен по схеме с общим затвором, а V12 — с общим коллектором;второй — на транзисторах V14, V15 (V14 — с общим эмиттером, а V15 — с общим коллектором). Сигнал обратной связи с движка резистора R9, приложенный к истоку транзистора V13, усиливается без инвертирования фазы и поступает на базу транзистора V14. Транзистор V13 работает в режиме, близком к отсечке тока. Напряжение между истоком и затвором является в стабилизаторе образцовым. Цепь R2R3V11 служит только для температурной компенсации изменения тока стока транзистора V13 (без нее при замкнутом на общий провод затворе этого транзистора выходное напряжение стабилизатора изменяется на3…5 % в температурном интервале 20… 50 °С).
С коллектора транзистора V14 проинвертированный и усиленный сигнал передается на базу мощного регулирующего транзистора V15.
Управляющий элемент питается от параметрического стабилизатора на стабилитроне V10 и транзисторе V9. Для получения более высокого коэффициента использования напряжения основного выпрямителя (см. статью «Улучшение маломощных стабилизаторов напряжения» — «Радио», 1981, N 10, с. 56) V1 — V4стабилизатор на транзисторе V9 питается от умножителя напряжения на диодахV5-V8 и конденсаторах С1, С2. Умножитель подключен ко вторичной обмотке трансформатора Т1. Лампа Н1 служит для ограничения коллекторного тока через транзисторы V9, V14 и базового тока транзистора V15 при коротком замыкании в цепи нагрузки, а также для индикации перегрузки. В момент перегрузки вследствие возрастания базового тока транзистора V15 происходит снижение напряжения на входе параметрического стабилизатора до уровня 30 В, где это напряжение почти полностью падает на лампе Н1 за вычетом падения напряжения на транзисторах V9, V14 и эмиттерном переходе транзистора V15. Ток по этой цепи не превышает 120…130 мА, что меньше предельно допустимого для ее элементов.
В стабилизаторе использован проволочный переменный резистор с допустимой мощностью рассеивания 3 Вт (ППБ-3, ПП3-40). Транзистор V13 необходимо подобрать с малым значением начального тока стока — только тогда нижняя граница выходного напряжения стабилизатора будет близка к 1 В. Ток стока этого транзистора при напряжении между стоком и истоком 10 В и затворе,замкнутом на исток, должен быть в пределах 0,5…0,7 мА. При монтаже стабилизатора между диодом V11 и транзистором V13 необходимо обеспечить хороший тепловой контакт, для чего достаточно склеить их корпусы. ТранзисторV15 желательно выбрать с большим статическим коэффициентом передачи тока базы. Кроме указанных на схеме, можно использовать кремниевые транзисторы серий КТ203, КТ208, КТ209, КТ501, КТ502, КТ3107 (V12), КТ814, КТ816 (V14),транзисторы КТ815, КТ817 с любым буквенным индексом, КТ807Б (V9),КТ803А,КТ808А, КТ819 с любым буквенным индексом (V15).
В стабилизаторе можно применить и германиевые транзисторы МП40А, а также любые из серий МП20, МП21, МП25, МП26 (V12), ГТ402, ГТ403, П213?П215 (V14).Вместо КС527А можно применить стабилитроны Д813, Д814Д (по два последовательно), Д810, Д814В (по три последовательно). Транзисторы V9 и V14желательно установить на небольшие радиаторы (с полезной площадью 20… 30см2).
Для транзистора V15 необходим радиатор с полезной площадью не менее 1500см2. С целью облегчения теплового режима этого транзистора предусмотрено ступенчатое изменение напряжения на входе стабилизатора тумблером S1,рассчитанным на ток 2 А. В положении 1 на вход стабилизатора подается 15 В,а в положении 2 — 30 В. Когда тумблер находится в положении 2 и сопротивление нагрузки близко к минимуму, стабилизированное напряжение не следует устанавливать менее 15 В.
Сетевой трансформатор намотан на магнитопроводе трансформатораТС-60.Первичная обмотка оставлена без изменения, вторичная перемотана; она содержит 200 витков (по 100 витков на каждую катушку) провода ПЭВ-2 1,16.
Для повышения надежности стабилизатора его можно дополнить защитным устройством, описанным в статье «Защитное устройство для транзисторов» («Радио», 1980, N9, с. 63). Возникающую иногда в стабилизаторе высокочастотную генерацию можно подавить либо увеличением номинала конденсатора С6, либо включением в цепь базы транзистора V15 резистора сопротивлением 5…10 Ом мощностью 1 Вт. Для обеспечения устойчивой работы стабилизатора его монтаж нужно выполнять проводниками минимальной длины,имеющими большое сечение токопроводящей жилы.
Параметрический стабилизатор напряжения
Параметрические стабилизаторы напряжения изготавливаются, как правило, с применением транзисторов, стабисторов и стабилитронов.
Данное устройство характеризуется невысоким КПД, вследствие чего используются в качестве модулей слаботочных схем, в которых имеются нагрузки не выше пары десятков миллиампер. Чаще всего они распространены в компенсационных стабилизирующих устройствах в роли опорных источников напряжения.
Параметрические стабилизаторы напряжения подразделяются на мостовые, однокаскадные и многокаскадные.
Принцип работы параметрических стабилизаторов напряжения
Представляем схему простого устройства данного типа, в основе которого находится стабилитрон:
Основным свойством стабилитрона, на базе которого функционирует параметрический стабилизатор напряжения, является то, что U на нем в рабочем диапазоне вольт-амперной характеристики (от Iст min до Iст max) остается практически прежним. При этом изменения происходят от Uст min до Uст max, однако при этом принято подразумевать, что Uст min = Uст max = Uст).
Составленная схема параметрического стабилизатора напряжения дает понять, что коррекция тока нагрузки либо входного U не происходит (он сохраняет те же значения, что и на стабилитроне). Но при этом происходят изменения тока, проходящего через стабилитрон, а при изменении напряжения на входе выполняется корректировка тока, двигающегося по балластному резистору. В результате в балластном резисторе происходит гашение излишков напряжения на входе. Значение этого падения зависят от проходящего через него тока, который, в свою очередь, взаимосвязан с электротоком через стабилитрон. В силу этого любая коррекция электротока через стабилитрон напрямую отражается на величине падения U, отмечаемой в балластном резисторе.
Для описания принципа данной схемы используется уравнение:
Для безукоризненного функционирования параметрического стабилизатора напряжения , которое определяется U на нагрузке в пределах от Uст min до Uст max, требуется следить за тем, чтобы через стабилитрон ток всегда оставался в границах от Iст min до Iст max. В частности, минимальные параметры тока через стабилитрон взаимосвязаны с минимальным U на входе и максимальной величиной электротока нагрузки.
Сопротивление балластного резистора устанавливается следующим образом:
Максимальные параметры тока через стабилитрон взаимосвязаны с максимальным напряжением на входе и минимальной величиной электротока нагрузки Вследствие этого, используя уравнение (1), достаточно просто устанавливается область, в которой параметрический стабилизатор напряжения функционирует нормально.
Расчет области нормального функционирования стабилизирующего устройства:
Выполнив перегруппировку этого выражения, получаем:
Если взять во внимание незначительные отличия между минимумом и максимумом напряжения стабилизации (Uст min и Uст max), то значение первого слагаемого в правой части уравнения можно привести к нулю, что, в итоге, создает уравнение, описывающее область нормальный функционал прибора, приобретающее следующую форму:
В случае постоянного тока нагрузки либо с незначительными изменениями, применяемая для установления области нормального функционала устройства формула переходит в разряд элементарных:
Расчет КПД параметрических стабилизаторов
На следующем этапе установим КПД рассматриваемого параметрического стабилизатора напряжения. Для его определения используется отношение мощности, которая уходит в нагрузку к мощности на входе в устройство:
С учетом I=Iн+Iст получаем:
Последняя приведенная формула показывает, что увеличение разницы между U на входе и выходе стабилизатора соответствует повышенному значению тока через стабилитрон, что существенно ухудшает КПД.
Пример оценки КПД
Для того, чтобы полноценно оценить «негативные» характеристики КПД, используем приведенные выше формулы, но при этом условно снизим напряжение до 5 Вольт. Для этого используем стандартный стабилитрон, например, КС147А. Согласно характеристикам ток в нем может изменяться в диапазоне от 3-х до 53-х мА.
Согласно условиям, нам требуется получить область нормального функционирования, ширина которой составляет 4 Вольта. Для этого необходимо взять балластный резистор в 80 Ом. С учетом постоянного тока нагрузки используем формулу 4 (иные параметры значительно «ухудшают» положение). На основе этого можно вычислить, применяя формулу 2, расчет на какие значения тока в данной ситуации следует рассчитывать. В результате имеем 19,5 мА, причем КПД на таких условиях составит, в зависимости от U на входе, 14%-61%.
Для того, чтобы просчитать максимальные значения выходного тока в этих же условиях, необходимо поменять в них значение тока с постоянного на изменяющийся в диапазоне от нуля до Imax. Тогда одновременно решая уравнения 2 и 3, получаем R=110 Ом, Imax=13,5 мА. Таким образом, очевидно, что максимум тока стабилитрона в четыре раза превышает максимальное значение тока на выходе.
Недостатком параметрического стабилизатора можно назвать то, что напряжение на выходе отличается внушительной нестабильностью, напрямую завися от тока на выходе, что делает неприемлемым дальнейшую эксплуатацию прибора.
В итоге, с уверенностью можно сказать, что параметрический стабилизатор напряжения обладает лишь одним преимуществом — простым исполнением. Благодаря этому данные устройства продолжают свое существование и даже характеризуются массовым использованием в достаточно сложных схемах, как уже отмечалось, в роли опорного источника напряжения.
Регулируемый стабилизатор напряжения и тока с защитой от КЗ
Принципиальная электрическая схема является синтезом с максимально возможным использованием схемотехники и входящих элементов стабилизатора напряжения и стабилизатора тока.
- Стабилизатор напряжения постоянного тока
- Недостатком стабилизатора напряжения
- Настройка стабилизатора напряжения
- Настройку стабилизатора тока
- Стабилизатор собран в коробчатом корпусе
Стабилизатор напряжения постоянного тока
Стабилизатор имеет следующие параметры:
- Предел изменения.
- Напряжения: 3,3-12,6В.
- Предел изменения тока: 0,02-1А.
Стабилизатор напряжения изображен на сайте собран на транзисторах VT1-VT3 различной проводимости и не имеет специальных элементов РЭА, предназначенных для работы в схеме защиты от короткого замыкания. Защита обеспечивается схемотехникой – наличием триггерного эффекта при коротком замыкании в цепи нагрузки, и как результат – ограничение тока через VT1 до безопасного уровня.
Величина тока срабатывания защиты прямо пропорциональна току через VD5 и устанавливается резистором R3 в пределах тока стабилизации VD5. Конденсатор С2 улучшает запуск стабилизатора при емкостном характере нагрузки.
Недостатком стабилизатора напряжения
является изменение (уменьшение) тока срабатывания защиты при уменьшении резистором R7 выходного напряжения. Как показала эксплуатация стабилизатора с различными видами нагрузок в течение 2 лет, этот недостаток оказался несущественным.
При переключении переключателя SA1 в режим «Ток» изменяются место и схема подключения опорного напряжения, в результате чего стабилизатор напряжения преобразуется в источник тока с высоким внутренним сопротивлением, не боящийся перегрузок.
Настройка стабилизатора напряжения
Заключается в подборе сопротивления резистора R6 до получения верхнего предела изменения напряжения с одновременным контролем тока через VD5. Ток через VD5 не должен превышать 60 мА без нагрузки при выходном напряжении 12,6 В. Тогда ток срабатывания защиты будет около 1,2 А.
Настройку стабилизатора тока
Надо проводить в следующей последовательности. Установите R7 в нижнее (по схеме) положение. К выходным клеммам подключите амперметр. Медленно вращая ручку R7, увеличивайте ток. Ток через амперметр при верхнем (по схеме) положении движка R7 не должен превышать 1 А В противном случае подберите сопротивление R6, которое является общим для обоих стабилизаторов и определяет верхний предел изменения напряжения и тока. При этом ток через VD5 должен быть на 5-10 мА больше тока срабатывания реле (в авторском варианте 25 мА).
Если алгоритм 12 В – 1А не удовлетворяет, введите резистор R6-1 и коммутируйте дополнительными контактами подключение R6 или R6-1 к катоду VD5 в зависимости от алгоритма. В авторском варианте максимальный ток определялся током через VD1-VD4, максимальной электрической мощностью VT1, реальной конвекцией тепла от примененного радиатора. Эти параметры позволяют получить надежность параметров при долговременной эксплуатации.
Стабилизатор собран в коробчатом корпусе
Размер корпуса 65x95x150 мм. Задней стенкой служит радиатор VT1, укрепленный на шасси без изолирующих прокладок и определяющий высоту корпуса. Длина зависит от примененных трансформатора и конденсаторов C1, СЗ Резистор R7 и выходные клеммы размещены на передней стенке. Материал корпуса оцинкованная сталь.
К деталям особых требований не предъявляется. В авторском варианте применены детали, имевшиеся в наличии. Сопротивление R1 намотано проводом из манганина диаметром 0,5 мм, R2, R4, R5, R6 типа МЛТ-05, R3 – МЛТ1, R7 – СП 1-1. Конденсаторы С1, СЗ типа К50-12, С2 – К50-6. Радиатор VT1 литой – от выходного каскада кадровой развертки телевизора УЛПЦТИ-59.
Транзисторы VT2, VT3 кремниевые, поскольку германиевые обладают значительным начальным током коллектора, что ухудшает работу стабилизатора. Диодная сборка – КЦ402, переключатель SA1 типа ТП-1-2, трансформатор – мощностью 50 Вт, обеспечивающий на вторичной обмотке напряжение 15В при токе 1,5А. Реле – РЭС6 (РФ0452103).
Схемы стабилизаторов напряжения — разновидности и устройство
Стабилизаторы напряжения предотвращают поломки оборудования и бытовой техники от колебания нагрузки. Устройство совместимо с однофазной и трехфазной сетью, подходит для квартиры и частного дома. Схема стабилизатора напряжения может понадобиться при самостоятельном подключении прибора или обустройстве электросети.
- Принцип работы стабилизаторов
- Принцип действия релейных моделей
- Как работают сервоприводные приборы
- Принцип работы инверторных устройств
- Особенности расчета характеристик
- Схема для компенсационного стабилизатора
- Последовательная схема
- Параллельная схема
- Схема параметрического стабилизатора
- Специфика импульсного устройства
- Стабилизаторы на микросхемах
- Последовательные стабилизаторы
- Специфика параллельного стабилизатора
- Особенности приборов с тремя выводами
- Алгоритм самостоятельной сборки аппарата
- Схема подключения стабилизатора
Принцип работы стабилизаторов
Различные типы стабилизаторов напряжения
Принцип функционирования зависит от типа оборудования. Для выделения общих моментов целесообразно рассмотреть конструкцию. Прибор состоит из таких элементов:
- Система управления. Позволяет отслеживать вольтаж на выходе, доводя его до стабильного показателя 220 В. Оборудование работает с погрешностью 10-15 %.
- Автоматический трансформатор. Имеется у релейных, симисторных, сервомоторных модификаций. Повышает или понижает номинал напряжения.
- Инвертор. Механизмом из генератора, трансформатора и транзисторов оснащаются инверторные модели. Элементы через первичную обмотку могут пропускать либо выключать ток, формируя напряжение на выходе.
- Защитный блок, источник вторичного питания. Имеются у моделей, рассчитанных на 220 Вольт.
Принцип действия релейных моделей
Релейный аппарат регулирует вольтаж посредством замыкания контактов реле. Контроль параметров осуществляется с помощью микросхемы, элементы которой сравнивают сетевое напряжение с опорным. Если показатели не совпадают, от микросхем стабилизаторов напряжения поступают сигналы на понижение или повышение обмотки.
При дешевизне и компактности релейное оборудование медленно реагирует на скачки напряжения, может кратковременно выключаться, не выдерживает перегрузки.
Погрешность устройств – 5-10 %.
Как работают сервоприводные приборы
Основные узлы сервоприводного аппарата – серводвигатель и автоматический трансформатор. Если напряжение отклонилось от нормы, поступает сигнал на переключение трансформаторных от контроллера к мотору. Сравнение показателей опорного и входного вольтажа осуществляет плата управления.
Сервоприводные стабилизаторы могут регулировать нагрузку трехфазной и однофазной сети. Они отличаются стойкостью, надежностью, исправным функционированием при перегрузке.
Точность приборов – 1 %.
Принцип работы инверторных устройств
Инверторный стабилизатор регулирует напряжение по системе двойного преобразования:
- Переменный ток на входе выравнивается, пропускается через конденсаторный фильтр пульсации.
- Выпрямленный ток подается к инвертору, трансформируется в переменный и поступает на нагрузку.
Выходное напряжение остается стабильным.
Приборы с инверторами отличаются быстротой реакции, КПД от 90%, бесперебойной и бесшумной работой в диапазоне 115-300 Вольт.
Диапазон регулирования аппарата снижается, если нагрузка увеличивается.
Особенности расчета характеристик
Чтобы установить параметрический аппарат, понадобится вычислить мощность, вольтаж на входе, ток базы транзисторов. К примеру, максимальное напряжение на выходе равняется 14 В, минимальное на выходе – 1,5 В, а максимальный ток – 1 А. Зная параметры, производится расчет:
- Входное напряжение. Используется формула Uвх=Uвых+3. Цифра – коэффициент падения напряжения на участке перехода от коллектора к эмиттеру.
- Максимальная мощность, которую рассеивает транзистор. Для подбора в пользу большей величины понадобится справочник. Применяются такие формулы: Pmax = 1.3 (Uвх-Uвых) Imax = 1.3 (17-14) = 3,9 Вт; Pmax = 1.3 (Uвх-Uвых1) Imax = 1.3 (17-1.5) = 20,15 Вт.
- Ток транзисторной базы. Расчеты производятся по формуле: Iб max = Imax/h21Э min. Последний показатель равен 25, поэтому 1/25 = 0,04 А.
- Параметры балластного тиристора. Применяется формула Rб = (Uвх-Uст)/(Iб max+Iст min )= (17-14)/(0,00133+0,005) = 474 Ом.Iст min – ток стабилизации; Uст – напряжение стабилизации, которое выдает стабилитрон.
Цифры и расчеты предоставлены для резисторов с сопротивлением 1 Ом.
Схема для компенсационного стабилизатора
Компенсационные схемы объясняют подключение с обратной связью. Сами устройства имеют точное напряжение на выходе без привязки к току нагрузки.
Последовательная схема
Компенсационный стабилизатор напряжения последовательного типа
По обозначениям из справочника можно идентифицировать:
- регулирующий узел – Р;
- источник эталонного номинала напряжения – И;
- сравниваемые показатели – ЭС;
- усилитель постоянных токов – У.
Для вычисления напряжения на выходе понадобится знать особенности работы устройства. Один транзистор будет регулировать, а второй – стабилизировать. Стабилитрон является источником опорного. Разность мощностей – напряжение на участке между эмиттером и базой.
При подаче коллекторного тока на резистор напряжение падает, имеет обратную полярность для эмиттерного узла. В результате происходит падение коллекторного и эмиттерного токов. Чтобы регулировка была плавной, для линии стабилизатора используется делитель. Ступенчатое регулирование достигается при помощи напряжения опоры стабилитрона.
Параллельная схема
Компенсационный стабилизатор напряжения параллельного типа
Если напряжение отклонилось от номинала, возникает импульс рассогласования. Это разница между показателями выхода и опоры. Поскольку узел регулировки расположен параллельно нагрузке, он усиливает сигнал. Происходит изменение тока на элементе-регуляторе, падение напряжения резистора и сохранение постоянного номинала на выходе.
Схема параметрического стабилизатора
Схема, объясняющая процесс стабилизации опорного напряжения, будет основной для параметрических моделей. Делитель напряжения прибора представляет собой балластный резистор и стабилитрон с параллельным сопротивлением нагрузки. При колебании номинала напряжения питания и токовой нагрузки стабилизируется напряжение.
Если данный показатель возрастает на входе, увеличивается ток, проходящий через стабилитрон и резистор. Благодаря вольт-амперным показателям номинал стабилитрона почти не меняется, как и напряжение сопротивления нагрузки. Все колебания касаются только резистора.
Специфика импульсного устройства
Простой импульсный стабилизатор напряжения
Импульсный аппарат отличается высоким КПД даже в условиях большого диапазона напряжения. Схема устройства включает ключ, энергетический накопитель и цепь управления. Элемент регулировки подключается в режиме импульса. Принцип действия прибора:
- От второго коллектора через второй конденсатор к базе подается положительное напряжение обратной связи.
- Коллектор №2 открывается после насыщения током от резистора №2.
- На переходе от коллектора к эмиттеру насыщение меньше, и он остается открытым.
- Усилитель подключается на коллектор №3 через стабилитрон №2.
- Подсоединение базы осуществляется к делителю.
- Первый стабилитрон управляет открытием/закрытием второго коллектора по сигналу от третьего.
Когда второй стабилитрон открыт, энергия накапливается в дросселе, поступая поле закрытия на нагрузку.
Стабилизаторы на микросхемах
Линейный делитель отличается подачей нестабильного напряжения на вход и снятием стабильного с плеча делителя. Выравнивание осуществляет делительное плечо, поддерживающее постоянное сопротивление. Устройства отличаются простотой конструкции, отсутствием помех в работе. Микросхемы соединяются последовательно или параллельно.
Последовательные стабилизаторы
Последовательный стабилизатор на биополярном транзисторе
Последовательные устройства характеризуются включением элемента регулировки параллельно с нагрузкой. Существует две модификации:
- С биполярным транзистором. Не имеет авторегулируемого контура, стабильность напряжения зависит от величины тока и температурных показателей. В качестве токового усилителя используется эмиттерный повторитель или транзистор составного типа.
- С контуром авторегулировки. Компенсационный прибор работает по принципу выравнивания выходного и опорного номинала. Часть напряжения на выходе снимается с резистивного делителя, а потом сравнивается при помощи стабилитрона. Контуром регулирования является петля обратной связи со сдвигом по фазе 180 градусов. Стабилизация тока производится резистором или источником питания.
Самые популярные последовательные стабилизаторы – интегральные.
Специфика параллельного стабилизатора
Параллельный прибор отличается включением элемента регулировки параллельно подаваемой нагрузке. Стабилитрон используется полупроводникового или газоразрядного типа. Схема востребована для регулирования сложных устройств.
Снижение нестабильного показателя напряжения на входе осуществляется при помощи резистора. Допускается использовать двухполярный автомат с высокими показателями дифференциального сопротивления на отдельном участке.
Особенности приборов с тремя выводами
Стабилизаторы для переменного напряжения отличаются небольшими габаритами, выпускаются в пластиковом или металлическом корпусе. Они оснащаются каналами для входа, заземления и вывода. Конденсаторы прибора для уменьшения пульсаций запаиваются с двух сторон.
Напряжение на выходе составляет около 5 В, на входе – около 10 В, мощность рассеивания – 15 Вт.
Трехвыводные модификации позволяют получить вольтаж нестандартного номинала, необходимое для запитки макетов, маломощных АКБ, при починке или модернизации аппаратуры.
Алгоритм самостоятельной сборки аппарата
Для самостоятельного изготовления целесообразно использовать схему симистора – эффективного прибора. Он выравнивает номинал подаваемого тока при напряжении от 130 до 270 В. Сделать прибор можно на основе печатной платы из фольгированного текстолита. Сборка устройства осуществляется так:
- Подготовка магнитопровода и нескольких кабелей.
- Создание обмотки из провода диаметром 0,064 мм – понадобится 8669 витков.
- Остальные проводники диаметром 0,185 мм нужны для оставшихся обмоток. Количество витков каждой – 522.
- Последовательное соединение трансформаторов на 12 В.
- Организация 7-ми отводов. Первые 3 изготавливаются из провода диаметром 3 мм, другие – из шин с сечением 18 мм2. Так самодельный аппарат не будет нагреваться.
- Установка контроллерной микросхемы на платиновый теплоотвод.
- Монтаж симисторов и светодиодов.
Для устройства понадобится прочный корпус, прикрепленный к жесткому каркасу. Самый простой вариант – полимерные или алюминиевые пластины.
Схема подключения стабилизатора
Схема подключения стабилизатора напряжения
Ввод стабилизатора в частный дом выполняется при помощи трехжильного ВВГнг-кабеля, трехпозиционного выключателя и провода ПУГВ. Установка производится до счетчика, в отдельном или распределительном щитке:
- Открыть контакты, подняв лицевую крышку.
- Пропустить на выход и вход кабель. Фазу входа затянуть на клемме Lin, нулевой (синий) проводник – на клемме Nin, землю – на винтовой зажим с соответствующим обозначением.
- При отсутствии земли закрутить эту жилу под винт на корпусе прибора.
- Вернуть стабилизированное напряжение в общий щиток. Фаза подводится на выход Lout, ноль – к Nout, земля – к заземлению на входе.
- Протестировать схему в режиме без нагрузки.
Для теста отключаются все автоматы, кроме вводного и направленного на стабилизатор.
Стабилизатор, подключенный между сетью и нагрузкой, подходит для частного или дачного дома, квартиры, производства. Прибор защищает оборудование от выхода из строя, устраняет влияние на электролинию перегрузки и коротких замыканий.