Schetchiksg.ru

Счетчик СГ
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатора тока из импульсного блока питания

Стабилизатора тока из импульсного блока питания

Поэтому недостаточно опытным радиолю­бителям, не знающим правил работы с высоким напряжением (в частности, никогда не работать в одиночку и никогда не настраивать включенное уст­ройство двумя руками — только одной!), не рекомендую повторять эту схему.

На рис. 1 представлена электрическая схема импульсного стабилизатора напряжения для зарядки сотовых телефонов.

Схема представляет собой блокинг-генератор, реализованный на транзисторе VT1 и трансформаторе Т1. Диодный мост VD1 выпрямляет переменное сете­вое напряжение, резистор R1 ограничивает импульс тока при включении, а также выполняет функцию предохранителя. Конденсатор С1 необязателен, но благодаря ему блокинг-генератор работает более стабильно, а нагрев транзи­стора VT1 чуть меньше (чем без С1).

При включении питания транзистор VT1 слегка приоткрывается через рези­стор R2, и через обмотку I трансформатора Т1 начинает течь небольшой ток. Благодаря индуктивной связи, через остальные обмотки также начинает протекать ток. На верхнем (по схеме) выводе обмотки II положительное напряжение небольшой величины, оно через разряженный конденсатор С2 приоткрывает транзистор еще сильней, ток в обмотках трансформатора нарастает, и в итоге транзистор открывается полностью, до состояния насыщения.

Через некоторое время ток в обмотках перестает нарастать и начинает снижаться (транзистор VT1 все это время полностью открыт). Уменьшается напряжение на обмотке II, и через конденсатор С2 уменьшается напряжение на базе транзистора VT1. Он начинает закрываться, амплитуда напряжения в обмотках уменьшается еще сильней и меняет полярность на отрицательную.

Затем транзистор полностью закрывается. Напряжение на его коллекторе увеличивается и становится в несколько раз больше напряжения питания (индуктивный выброс), однако благодаря цепочке R5, С5, VD4 оно ограничивается на безопасном уровне 400. 450 В. Благодаря элементам R5, С5 генерация нейтрализуется не полностью, и через некоторое время полярность напряжения в обмотках снова меняется (по принципу действия типичного колебательного контура). Транзистор снова начинает открываться. Так продолжается до бесконечности в цикличном режиме.

На остальных элементах высоковольтной части схемы собраны регулятор напряжения и узел защиты транзистора VT1 от перегрузок по току. Резистор R4 в рассматриваемой схеме выполняет роль датчика тока. Как только паде­ние напряжения на нем превысит 1. 1,5 В, транзистор VT2 откроется и замк­нет на общий провод базу транзистора VT1 (принудительно закроет его). Конденсатор СЗ ускоряет реакцию VT2. Диод VD3 необходим для нормаль­ной работы стабилизатора напряжения.

Стабилизатор напряжения собран на одной микросхеме — регулируемом стабилитроне DА1.

Для гальванической развязки выходного напряжения от сетевого использует­ся оптрон VOL Рабочее напряжение для транзисторной части оптрона берет­ся от обмотки II трансформатора Т1 и сглаживается конденсатором С4. Как только напряжение на выходе устройства станет больше номинального, через стабилитрон DA1 начнет течь ток, светодиод оптрона загорится, сопротивле­ние коллектор-эмиттер фототранзистора VOL2 уменьшится, транзистор VT2 приоткроется и уменьшит амплитуду напряжения на базе VT1.

Он будет сла­бее открываться, и напряжение на обмотках трансформатора уменьшится. Если же выходное напряжение, наоборот, станет меньше номинального, то фототранзистор будет полностью закрыт и транзистор VT1 будет «раскачиваться» в полную силу. Для защиты стабилитрона и светодиода от перегрузок по току, последовательно с ними желательно включить резистор сопротивле­нием 100. 330 Ом.

Налаживание
Первый этап: первый раз включать устройство в сеть рекомендуется через лампу 25 Вт, 220 В, и без конденсатора С1. Движок резистора R6 устанавли-вают в нижнее (по схеме) положение. Устройство включают и сразу отклю­чают, после чего как можно быстрей измеряют напряжения на конденсаторах С4 и Сб. Если на них есть небольшое напряжение (согласно полярности!), значит, генератор запустился, если нет генератор не работает, требуется поиск ошибки на плате и монтаже. Кроме того, желательно проверить тран­зистор VT1 и резисторы R1, R4.

Если все правильно и ошибок нет, но генератор не запускается, меняют мес­тами выводы обмотки II (или I, только не обоих сразу!) и снова проверяют работоспособность.

Второй этап: включают устройство и контролируют пальцем (только не за металлическую площадку для теплоотвода) нагрев транзистора VTI, он не должен нагреваться, лампочка 25 Вт не должна светиться (падение напряже­ния на ней не должно превышать пары Вольт).

Подключают к выходу устройства какую-нибудь маленькую низковольтную лампу, например, рассчитанную на напряжение 13,5 В. Если она не светится, меняют местами выводы обмотки III.

И в самом конце, если все нормально работает, проверяют работоспособность регулятора напряжения, вращая движок подстроечного резистора R6. После этого можно впаивать конденсатор С1 и включать устройство без лампы-токоограничителя.

Читайте так же:
Стабилизатор напряжения для генератора переменного тока

Минимальное выходное напряжение составляет около 3 В (минимальное па­дение напряжения на выводах DA1 превышает 1,25 В, на выводах светодио­да—1,5В).
Если нужно меньшее напряжение, заменяют стабилитрон DA1 резистором сопротивлением 100. 680 Ом. Следующим шагом настройки требуется уста­новка на выходе устройства напряжения 3,9. 4,0 В (для литиевого аккумуля­тора). Данное устройство заряжает аккумулятор экспоненциально умень­шающимся током (от примерно 0,5 А в начале заряда до нуля в конце (для литиевого аккумулятора емкостью около 1 А/ч это допустимо)). За пару ча­сов режима зарядки аккумулятор набирает до 80 % своей емкости.

О деталях
Особый элемент конструкции — трансформатор.
Трансформатор в этой схеме можно использовать только с разрезным ферри-товым сердечником. Рабочая частота преобразователя довольно велика, поэтому для трансформаторного железа нужен только феррит. А сам преоб­разователь — однотактный, с постоянным подмагничиванием, поэтому сер­дечник должен быть разрезным, с диэлектрическим зазором (между его поло­винками прокладывают один-два слоя тонкой трансформаторной бумаги).

Лучше всего взять трансформатор от ненужного или неисправного анало­гичного устройства. В крайнем случае его можно намотать самому: сечение сердечника 3. 5 мм2, обмотка I-450 витков проводом диаметром 0,1 мм, обмотка II-20 витков тем же проводом, обмотка III-15 витков прово­дом диаметром 0,6. 0,8 мм (для выходного напряжения 4. 5 В). При намот­ке требуется строгое соблюдение направления намотки, иначе устройство будет плохо работать, или не заработает совсем (придется прикладывать усилия при налаживании — см. выше). Начало каждой обмотки (на схеме) вверху.

Транзистор VT1 — любой мощностью 1 Вт и больше, током коллектора не менее 0,1 А, напряжением не менее 400 В. Коэффициент усиления по току Ь2ь должен быть больше 30. Идеально подходят транзисторы MJE13003, KSE13003 и все остальные типа 13003 любой фирмы. В крайнем случае, при­меняют отечественные транзисторы КТ940, КТ969. К сожалению, эти транзи­сторы рассчитаны на предельное напряжение 300 В, и при малейшем повы­шении сетевого напряжения выше 220 В они будут пробиваться. Кроме того, они боятся перегрева, т. е. требуется их установка на теплоотвод. Для транзи­сторов KSE13003 и МГС13003 теплоотвод не нужен (в большинстве случаев цоколевка — как у отечественных транзисторов КТ817).

Транзистор VT2 может быть любым маломощным кремниевым, напряжение на нем не должно превышать 3 В; это же относится и к диодам VD2, VD3. Конденсатор С5 и диод VD4 должны быть рассчитаны на напряжение 400. 600 В, диод VD5 должен быть рассчитан на максимальный ток нагрузки. Диодный мост VD1 должен быть рассчитан на ток 1 А, хотя потребляемый схемой ток не превышает сотни миллиампер — потому что при включении происходит довольно мощный бросок тока, а увеличивать сопротивление ре­зистора Шдля ограничения амплитуды этого броска нельзя — он будет силь­но нагреваться.

Вместо моста VD1 можно поставить 4 диода типа 1N4004. 4007 или КД221 с любым буквенным индексом. Стабилизатор DA1 и резистор R6 можно заме­нить на стабилитрон, напряжение на выходе схемы будет на 1,5 В больше напряжения стабилизации стабилитрона.

«Общий» провод показан на схеме только для упрощения графики, его нельзя заземлять и (или) соединять с корпусом устройства. Высоковольтная часть устройства должна быть хорошо изолирована.

radiohlam.ru

полезные устройства из радиохлама

  • Темы без ответов
  • Активные темы
  • Поиск

мощный блок питания/стабилизатор

мощный блок питания/стабилизатор

Сообщение 4ainik » 06 сен 2011, 04:27

прежде всего хочу выразить свое восхищение! это классный сайт, каких в рунете не так много, особенно с подробным изложением теории и подкреплением теории практическими реализация и расчетами, а не как это часто бывает непонятными схемами и со с потолка взятыми элементами!
как говорится респект и уважуха!

ну а теперь к делу. я далеко не специалист в области электроники и поэтому требуется ваша помощь.
постановка задачи:

программа минимум:
импульсный блок питания — стабилизатор тока на 5-10А с регулировкой макс. допустимого тока нагрузки и просадкой напряжения при превышении тока.
задача состоит в том, что к этому БП будет подключаться нагрузка от 0.1 до 1 Ом. нагрузка в данном случае представляет собой простой кусок стальной проволоки разной длинны. т.е. фактически пассивное сопротивление и независимо от этого самого сопротивления должен обеспечиваться постоянный ток и рассеиваемая мощность на единицу длинны подключаемого сопротивления, чтобы температура была примерно одинаковая. выходное напряжение в данном случае единицы вольта, планируется использовать для этой схемы трансформатор Р=98Вт с выходным напряжением хх

6В (http://www.mariklab.ru/reference/transf . /TN56.html).
в принципе http://radiohlam.ru/pitanie/preobr_down_pol_n.htm примерно то, что нужно с поправкой на больший ток, но в схеме имхо не хватает ограничителя тока и регулировки, т.е. на сколько я понимаю (если вообще правильно?), данная схема обеспечивает только стабильное выходное напряжение, задаваемое делителем R1+R2,R3.
куда бы воткнуть переменный резистор (желательно слаботочный, а не проволочный ), чтобы превратить эту схему в стабилизатор тока (если конечно такое вообще возможно в рамках этой элементной базы)?

Читайте так же:
Схема импульсного стабилизатора напряжения тока

программа максимум:
импульсный блок питания — регулируемый стабилизированный от 1 до 15-20В, стабилизатор тока на 5-10А с регулировкой макс. допустимого тока нагрузки и просадкой напряжения при превышении тока + индикация тока/напряжения ну тут понятно, что это более универсальный прибор
представляющий собой венец творения и мегапроект в разделе «питание»

Re: мощный блок питания/стабилизатор

Сообщение za9c » 06 сен 2011, 13:42

Re: мощный блок питания/стабилизатор

Сообщение za9c » 06 сен 2011, 13:48

Re: мощный блок питания/стабилизатор

Сообщение za9c » 06 сен 2011, 13:52

Re: мощный блок питания/стабилизатор

Сообщение rhf-admin » 06 сен 2011, 21:44

Ну, в принципе, для программы минимум действительно пойдёт транчформатор с понижайкой, только для стабилизации тока в понижайке надо обратную связь по другому сделать. Например, как вот тут у Барса на самой первой схеме, т.е. снимать напряжение с токоизмерительного резистора через усилитель на операционнике. Тут идея в том, что стабилизируется падение напряжения на включенном последовательно с нагрузкой сопротивлении. Iн=1,25/(Rти*Ку), Iн — ток нагрузки, Rти — сопротивление токоизмерительного резистора, Ку — коэффициент усиления усилителя. Усилитель — обычный, неинвертирующий, расчёт тут. Только видимо понадобится токоизмерительный резистор очень маленького номинала и усилитель с большим коэффициентом усиления, иначе при такой маленькой нагрузке мощность, выделяемая на этом резисторе, и на нагрузке будут примерно одного порядка.
Кстати, на материнках видел токоизмерительные резисторы очччень маленького номинала (0,003 Ом) в виде скобы стальной и сверху сопротивление подписано. При таком номинале и токе 10А коэффиуциент усиления получается около 40. Настраивать конечно такую схему будет видимо оооччень приятно, тут даже сопротивление проводов и дорожек влиять будет сильно.

А программа максимум. Да, надеюсь когда-нибудь такой БП сделать, но пока готового решения (чтоб пальцем ткнуть ) у меня нет.

Re: мощный блок питания/стабилизатор

Сообщение Fai » 07 сен 2011, 00:41

Re: мощный блок питания/стабилизатор

Сообщение rhf-admin » 07 сен 2011, 01:55

Re: мощный блок питания/стабилизатор

Сообщение 4ainik » 07 сен 2011, 05:41

всем огромное спасибо за ответы, но большая просьба не тыкать пальцем в небо и не говорить дежурную фразу «в нете схем море». в том то и дело, что море и все их не пересмотришь и уж тем более не перепробуешь, потому и спрашиваю. зря я наверное свалил в кучу и объединил по сути две разные задачи (минимум и максимум) в одном топике, хотя первая это всего лишь частный случай второй, но пока пожалуй более простой вариант приоритетнее и поэтому прошу пока ограничиться обсуждением стабилизатора тока, т.е. первым ИБП. опять же то, что будут большие токи и нужно будет делать дорожки соотв. ширины это понятно, так же я в общих чертах представляю, что в стабилизаторе тока скорее всего будет шунт, компаратор, полевик и даже индуктивность он все же прошу приводить конкретные схемы, которые по вашему мнению удовлетворяют поставленной задаче.

кстати лучше использовать полевик или IGBT? последние вроде как мощнее и соответственно потери на них будут меньше.

по поводу TL494 и KA3845: да цена вполне доступна и идея нравится, но все же хочу уточнить по поводу других вариантов в частности MC34063, возможно ли построение стабилизатора тока удовлетворяющего поставленной задаче с использованием м/с MC34063?

по поводу шунта: это не проблема вот например как вариант http://ekits.ru/index.php?productID=1881 , так же у них на сайте есть готовые цифровые вольтметры, амперметры по вполне доступной цене, которые вполне можно использовать при изготовлении второго варианта ИБП из программы максимум.

za9c спасибо за книгу, полистал. защита и ограничитель по току на «пике» наверное не самый лучший и удачный вариант? в таких вещах наверное более предпочтительны чисто аппаратные решения (, т.е. без контроллеров и ПО) и время срабатывания в 150мс не много ли?

Fai чувак из радио похоже чуток перестарался запихнул в ИБП еще и линейный стабилизатор, да может пульсации будут меньше, хотя как бы не получилось «как всегда» а то будут пульсации еще больше стремноватая конструкция это однозначно

Читайте так же:
Крен2а стабилизатор тока схема включения

Последовательная стабилизация

Лучшими параметрами и более высокой эффективностью характеризу­ются последовательные стабилизаторы (или, более точно, стабилизаторы с последовательным включением регулирующего элемента), в которых применяется транзистор или тиристор, включаемый последовательно с нагрузкой. Простая блок-схема последовательного стабилизатора пред­ставлена на рис. 29.16. Стабилизатор состоит из «последовательного» ре­гулирующего элемента и стабилизирующего нагрузочного резистора, обес­печивающего некоторый минимальный нагрузочный ток.

Последовательный транзисторный стабилизатор

Базовая схема последовательного стабилизатора с использованием тран­зистора показана на рис. 29.17. Выходное напряжение снимается с эмиттера транзистора T1, и, как хорошо видно из рис. 29.18, где та же схема изображена по-иному, этот транзистор включен по схеме эмиттерного повторителя. Стабилитрон поддерживает на постоянном уровне потенциал базы. Поскольку при прямом смещении потенциал эмиттера отслеживает потенциал базы, оставаясь всегда ниже последнего на 0,6 В (для кремниевого транзистора), то выходное напряжение стабилизатора так­же сохраняет свой постоянный уровень.

Эмиттерный повторитель работает как усилитель тока и обеспечива­ет работу источника питания на нагрузку, потребляющую большой ток. Стабилитрон является регулирующим элементом и источником опорного напряжения и потребляет меньший ток по сравнению со стабилитроном, работающим в параллельном стабилизаторе. Для эффективной стабили­зации ток через стабилитрон должен быть приблизительно в 5 раз больше базового тока транзистора.

Рассмотренный выше простой последовательный стабилизатор имеет Два главных недостатка.

Рис. 29.17. Источник питания с последовательной стабилизацией напряжения.

Рис. 29.18. Нарисованная по-другому схема рис. 29.17. Здесь явно видно, что транзистор T1 включен по схеме эмиттерного повторителя.

1. При больших токах нагрузки необходимо использовать мощные стаби­литроны и транзисторы с большим коэффициентом усиления тока.

2. Стабильность выходного напряжения такого стабилизатора недоста­точна для некоторых применений.

Первый недостаток можно преодолеть, если увеличить коэффициент усиления тока с помощью дополнительного транзистора T2, образующего второй каскад эмиттерного повторителя (рис. 29.19). При этом ток нагрузки может быть очень велик (амперы), тогда как ток стабилитрона по-прежнему остается очень малым. Стабильность выходного напряжения можно улучшить, если усилить изменение напряжения еще до сравнения его с опорным напряжением стабилитрона, как показано на рис. 29.20. Здесь T1 — обычный последовательный транзистор, а транзистор T2 работает как усилитель изменения напряжения. Стабилитрон выполняет только функцию источника опорного напряжения и, следовательно, может быть маломощным.

Транзистор T2 сравнивает выходное напряжение с опорным напряжением стабилитрона. Любое изменение выходного напряжения усиливается и подается на базу транзистора T1 , который поддерживает выходное напряжение на постоянном уровне.

Рис. 29.19. Последовательный стабилизатор с двухкаскадным эмиттерным по­вторителем (приведены два варианта изображения одной и той же схемы).

Рис. 29.20. Последовательный стабилизатор с усилителем изменения напряже­ния, который обеспечивает улучшение стабильности выходного напряжения.

Предположим, например, что некоторое внешнее возмущение вызвало увеличение выходного напряжения Vвых. Тогда потенциал базы транзистора T 2 возрастет относительно потенциала эмиттера, который зафиксирован опорным напряжением стабилитрона. и ток через этот транзистор увеличится, а напряжение на его коллекторе уменьшится. В результате уменьшится разность потенциалов между базой и эмиттером транзистора T 1 и, как следствие, уменьшится ток через транзистор T 1 и напряжение на нагрузке Vвых. Таким образом, компенсируется изменение Vвых. Различными модификациями базовой схемы последовательного стабилизатора можно добиться улучшения его параметров.

Цепь защиты от перегрузки

Одна из проблем, с которой приходится сталкиваться при использовании последовательного стабилизатора, обеспечение защиты последователь­ного регулирующего транзистора от перегрузки. Резкое возрастание тока через этот транзистор при перегрузке или коротком замыкании в цепи на­грузки может привести к необратимому повреждению транзистора. Один из возможных способов защиты от перегрузки представлен на рис. 29.21. Здесь T2 — транзистор защиты or перегрузки. Ток нагрузки IL про­текает через измерительный резистор R1 и создает на нем падение напряжения, обеспечивающее прямое смещение эмиттерного перехода этого транзистора. Когда ток нагрузки находится в пределах нормы, падение напряжения на R1 мало и транзистор T2 закрыт. При увеличении то­ка нагрузки выше допустимого уровня падение напряжения на резисторе R1 возрастает и открывает транзистор T2, он начинает проводить ток. В проводящем состоянии транзистор T2 «отбирает» часть тока у транзисто­раT1, обеспечивая его защиту. В схему защиты можно также включить устройство автоматического отключения источника питания от сети, если ток нагрузки превышает допустимый уровень.

Рис. 29.21. Последовательный стабилизатор с цепью защиты

от перегрузки на транзисторе T2.

Инверторы

Инверторы преобразуют входное напряжение постоянного тока в выход­ной синусоидальный сигнал. Они часто содержат схемы стабилизации выходного напряжения. Инверторы применяются главным образом в ка­честве резервных генераторов при аварийных сбоях питания.

Читайте так же:
Стабилизатор напряжения постоянного тока 12в

Инверторы, вырабатывающие гармоническое напряжение, могут быть реализованы как генераторы класса А или В. Однако линейный режим работы таких генераторов связан с высокими потерями, поэтому обычно используются переключающие элементы, вырабатывающие прямоуголь­ный периодический сигнал, который затем фильтруется для получения на выходе гармонического напряжения (рис. 29.22).

Рис. 29.22.

Конверторы

Конверторы преобразуют постоянное напряжение одной величины в по­стоянное напряжение другой величины. Конвертор состоит из инвертора, за которым следует выпрямитель. На рис. 29.23 показана простая схе­ма конвертора на основе блокинг-генератора. Выходной сигнал блокинг-генератора представляет собой последовательность прямоугольных им­пульсов с периодом, определяемым постоянной времени R1C1. К вто­ричной обмотке трансформатора подключен диод D1 для выпрямления импульсного сигнала. Усовершенствованная схема конвертора показана на рис. 29.24. Два блокинг-генератора на транзисторах T1 и T2 по очереди передают ток в трансформатор.

Импульсные источники питания

Более эффективными являются импульсные источники питания. В источниках этого типа последовательный регулирующий элемент (однооперационный триодный тиристор или транзистор) работает в режиме переключения. Он открывается или закрывается под управлением прямоугольных импульсов, обеспечивающих подстройку и стабилизацию выходного напряжения.

Импульсный источник питания по существу ничем не отличается от конвертора. Он преобразует нестабилизированное входное напряжение постоянного тока в пульсирующее напряжение и затем в стабилизированное постоянное напряжение (рис. 29.25). Частота переключения регулирующего элемента определяет частоту пульсаций на выходе, которые в значительной степени сглаживаются фильтром нижних частот.

Рис. 29.25.

Как видно из рис. 29.25, переменное сетевое напряжение сначала поступает на выпрямитель. После выпрямителя полученное нестабилизированное напряжение постоянного тока подается на анод переключающего элемента. Этот элемент, который может быть транзистором или тиристором, открывается и закрывается в определенные моменты времени под действием импульсов, поступающих от блока управления. Через открытый переключающий элемент заряжается накопительный конденсатор Заряд, запасаемый конденсатором (и, следовательно, выходное напряжение источника питания), определяется временем проводящего состояния этого элемента. Стабилизация выходного напряжения осуществляется путем изменения соотношения длительностей открытого или закрытого состояния переключающего элемента (т. е. изменения коэффициентазаполнения последовательности управляющих импульсов) в зависимости от величины выходного напряжения, регистрируемой специальным датчиком. Уменьшение выходного напряжения относительно установленного уровня компенсируется подачей более широких управляющих импульсов удерживающих переключающий элемент в открытом состоянии в течение более длительных промежутков времени, и наоборот.

В этом видео рассказывается о стабилизированном блоке питания:

Источник питания на базе импульсного компьютерного БП (5-15В, 1-10А)

Предлагаемое устройство, помимо неплохих технических характеристик, привлекательно тем, что за его основу взят импульсный блок питания отслужившего свой срок IBM-совместимого персонального компьютера. При этом отпадает необходимость в приобретении многих специфических радиоэлементов, изготовлении импульсных трансформаторов и дросселей.

Описываемый блок позволяет питать стабилизированным напряжением радиолюбительские конструкции и заряжать стабильным током различные аккумуляторные батареи.

Основные технические характеристики

  • Входное напряжение, В 220;
  • Выходное стабилизированное напряжение, В 5 — 15;
  • Напряжение пульсаций при токе 5 А, мВ, не более 25;
  • Выходной стабилизированный ток, А 1 -10.

Блок питания оснащен цифровой шкалой для индикации выходного напряжения и тока нагрузки, имеет регуляторы выходного напряжения для грубой и точной установки, регулятор ограничения выходного тока, индикатор максимального тока, предохранитель для защиты выходных цепей в случае неправильной полярности включения заряжаемого аккумулятора.

Рис. 1. Внешний вид импульсного блока питания на базе блока питания персонального компьютера.

Принципиальная схема

Рис. 2. Принципиальная схема импульсного блока питания.

Принципиальная схема устройства изображена на рис. 1, где «БП ПК» — импульсный блок питания компьютера; «Приставка» — устройство индикации с узлом стабилизации тока нагрузки.

В блок питания компьютера необходимо внести некоторые изменения. Его узел управления обычно выполнен на специализированной микросхеме (ШИ-контроллере) TL494 или её аналогах МВ3759, КА7500, КР1114ЕУ4.

На вывод 1 этой микросхемы подан сигнал обратной связи с выходных выпрямителей напряжений «+5В» и «+12В», а на вывод 2 — образцовое напряжение от внутреннего стабилизатора с вывода 14. Обратную связь от источника напряжения «+5В» следует отключить, удалив резистор R4 (здесь и далее нумерация элементов условная), а R6 и R8 заменить резисторами указанных на схеме номиналов.

Вместе с переменным резистором R1 они образуют делитель напряжения обратной связи, благодаря чему становится возможной регулировка (грубая) выходного напряжения блока. Его точное значение устанавливают переменным резистором R2, подключённым к выводу 2 ШИ-контроллера.

Блок питания оснащен встроенным вентилятором, питающимся от источника напряжения 12 В. Так как выходное напряжение будет меняться в широких пределах, вентилятор необходимо подключить через гасящий резистор R7 к выпрямителю, питающему ШИ-контроллер не меняющимся напряжением около 24В.

Читайте так же:
Схемы защиты стабилизаторов напряжения по току

К выходу «+12В» нужно добавить резистор R5, который обеспечит устойчивую работу блока питания в отсутствие нагрузки при низком выходном напряжении.

Желательно также поменять местами выпрямительные диоды источников «+5В» и «+12В», потому что в первом из них применены более мощные диоды.

Стабилизатор выходного тока собран на операционном усилителе DA1. На его неинвертирующий вход подано напряжение с резистора R17, включенного в минусовый провод выходной цепи блока питания. На инвертирующий вход DA1 поступает образцовое напряжение с переменного резистора R4, которым задают уровень стабилизации тока.

Резистор R9 и конденсатор С2 в цепи ООС, охватывающей ОУ, обеспечивают устойчивость работы этого узла. Через диод VD1 напряжение обратной связи поступает на вывод 3 ШИ-контроллера.

Светодиод HL1 — индикатор максимального тока, он светится при токе нагрузки, близком или равном заданному значению.

Измеритель напряжения и тока выполнен на АЦП DA3, включенном по типовой схеме, и цифровых индикаторах HG1 — HG4. Режим его работы выбирают переключателем SA1. Контактная группа SA1.1 коммутирует измеряемое напряжение, SA1.2 -запятые цифровой шкалы.

В положении переключателя «U» на вход АЦП поступает выходное напряжение блока питания через предохранитель F1 и резистивный делитель R11-R13, благодаря чему при перегорании предохранителя индикатор показывает О В. В режиме контроля тока (переключатель в положении I) АЦП измеряет падение напряжения на датчике тока — резисторе R17.

Напряжение питания «+5В» стабилизировано интегральным стабилизатором DA1, напряжение «-5В» — параметрическим стабилизатором VD3, R8, подключённым через диод VD2 к выпрямителю отрицательного напряжения импульсного блока.

Наладка устройства

Налаживание блока питания начинают с проверки пределов регулирования выходного напряжения (переключатель SA1 — в положении «U») по образцовому вольтметру. Стабилизатор тока на это время отключают, отпаяв провод, идущий от вывода 3 печатной платы к выводу 3 ШИ-контроллера. Если необходимо, пределы корректируют подбором резисторов R4 и R8.

Затем к блоку подсоединяют нагрузку с током потребления 5 — 10 А, переводят переключатель в положение «I» и по образцовому амперметру подстроечным резистором R12 устанавливают необходимое показание.

Далее, переключив индикатор на измерение напряжения, корректируют его показания по образцовому вольтметру подстроенным резистором R9. После этого восстанавливают цепь обратной связи стабилизатора тока, переключают индикатор на измерение тока и, изменяя сопротивление нагрузки, убеждаются в работоспособности стабилизатора. При необходимости границы интервала регулирования тока устанавливают подбором резисторов R1 nR4.

При нагрузке током 15 А и напряжении 15 В, может несколько увеличивался нагрев обмотки дросселя L2 в импульсном блоке питания. Этот недостаток можно устранить, перемотав его обмотку проводом вдвое большего сечения.

При зарядке батареи аккумуляторов стабильным током сначала следует установить регуляторами R1 и R2 напряжение окончания зарядки, а затем, подключив батарею, переменным резистором R4 — требуемый ток. Во время зарядки должен светиться светодиод HL1. По её окончании, когда напряжение на батарее возрастет до заданного значения, ток уменьшится, светодиод погаснет и блок питания перейдёт в режим стабилизации напряжения, в котором она может находиться длительное время. Таким образом, нет необходимости контролировать процесс зарядки и момент её окончания, не нужно отключать батарею по окончании зарядки.

Детали

Детали устройства индикации с узлом стабилизации тока нагрузки вместе с переменными резисторами R1, R2, R4 и гнездами X1 и Х2 смонтированы на печатной плате, закрепленной с помощью резьбовых стоек и винтов на передней стенке блока. На ней же (за печатной платой) установлен без изолирующей прокладки интегральный стабилизатор напряжения DA1.

В блоке питания применены постоянные резисторы МЛТ, переменные СПЗ-9а, подстроенные СПЗ-38.

Резистор R3 выполнен из трех отрезков константанового провода диаметром 1 и длиной примерно 50 мм, согнутых в виде П-образных скоб и припаянных к соответствующим печатным проводникам платы. Отклонение сопротивления этого резистора от указанного на схеме значения (0,01 Ом) не должно превышать ± 20 %.

Конденсаторы С1, С3 — К50-35, С9 -г- Cl 1 — К73-17, остальные — КМ.

Диод VD1 — любой германиевый.

Операционный усилитель DA2 — КР140УД608 с любым буквенным индексом, КР140УД708.

Цифровые индикаторы HG1 -к HG4 — АЛС324Б, АЛСЗЗЗБ, АЛС321Б.

Переключатель SA1 — кнопочный малогабаритный для печатного монтажа В170G или аналогичный.

Предохранитель F1 — плоский автомобильный на ток 10 А.

Чертёж монтажной платы приведён в журнале «Радио», № 10 за 2004 год.

Источник: Ходасевич А. Г, Ходасевич Т. И., Зарядные и пуско-зарядные устройства, Выпуск 2.

голоса
Рейтинг статьи
Ссылка на основную публикацию