Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизаторы для генераторов переменного тока

Бесщеточного типа AVR Mx341 Mx321 Mx321-генератор переменного тока регулируемого стабилизатора напряжения AVR Mx341-a Стэмфорд генераторах AVR

Описание Продукции

  • Номер Моделя: MX341-A
  • Условия использования : морской
  • Применение : Внесистемные единицы
  • Тип выхода : AC Однофазный
  • Метод охлаждения : С воздушным охлаждением
  • Способ установки : Исправлена
  • Тип генератора : Дизельный генератор
  • Trademark: SAFE. AVR
  • Packing: Single Box
  • Standard: 20*17*5cm
  • Origin: Fuanchina
  • HS Code: 8503009090
  • Production Capacity: 240000pieces/Year

Главная Описание
Генераторные установки генератора частей AVR автоматический регулятор напряжения контроллера MX341-A

Функции:
Регулятор напряжения генератора высокого качества, длинный срок службы.
Функция защиты: Встроенный на малой скорости системы возбуждения, лам.
Компактные размеры и небольшой вес и простота в использовании.
Высококачественные конденсаторы и клеммой, высочайшей производительности.
Профессионального производства, изготовления и высокой надежности.

Общее описание:
Стамфорд MX341 Регулятор напряжения происходит в два этапа отслеживается блоком автоматического регулятора напряжения и является частью системы возбуждения для
— Чем меньше щетки генератора. Питание цепи возбуждения, основаны на три этапа постоянного магнита генератор (PMG), чтобы изолировать напряжение
Регулятор цепи управления от последствий нелинейных нагрузок и для уменьшения радиочастотных помех на генераторе
Клемм. Устойчивый ток короткого замыкания генератора — это еще одна функция PMG системы.

В СТАМФОРД AVR MX341 обнаруживает напряжение в основной обмотки генератора и контролирует питание подается на блок инициализации датчиков вентилей статора и таким образом
Главного ротора для поддержания выходного напряжения генератора в пределах указанного диапазона, для компенсации нагрузки, скорости и температуры и
Коэффициент мощности генератора.

Схема плавного пуска для обеспечения плавного контролируемых скопление выходное напряжение генератора.
Цепь измерения частоты постоянно контролирует скорость вращения вала генератора и обеспечивает скорость движения в защиту
Система возбуждения путем уменьшения выходного напряжения генератора пропорционально скорости ниже предварительно настраивается порог. Еще
Эта функция предназначена для усиления регулируемый вольт в герцах склона для улучшения recotime двигателя на двигателях с турбонаддувом. Плавный пуск
Электрическая схема для обеспечения плавного контролируемых скопление выходное напряжение генератора.

Неконтролируемого возбуждения ограничено до безопасного периода в результате внутренних отключение регулятора напряжения выходного устройства. Это состояние
Остается разомкнутой, пока генератор был остановлен.
Предусматриваются ассигнования для подключения удаленных напряжение триммер, позволяя пользователю точное управление генератором.
Аналоговый вход на возможность подключения к Newage Контроллер коэффициента мощности или других внешних устройств с совместимыми
Выход.

Регулятор напряжения MX341 для Стэмфорд имеет механизм для КТ статизма связи для обеспечения параллельной работы с другими аналогично
Наличии генераторов.

Технические спецификации
*Напряжение входного сигнала дистанционного зондирования: 190-264V ac max, 1 фазы 2 провод
*Частота: 50-60 Гц номинальный
*Входная мощность (PMG) напряжение: 140-220V ac max, 3 фазы 3 провода
Ток 3 A/этапа
*Частота: 100-120 Гц номинальный
*Напряжение на выходе: Макс. 120 В постоянного тока
*Непрерывный ток 2, 7 A
*В ПРЕРЫВИСТОМ РЕЖИМЕ 6A в течение 10 секунд.
*Сопротивление 15 Ом минимальные правила: +/- 1% (см. Примечание 1)
*Температурный дрейф: 0, 03% oC изменения напряжения регулятора температуры окружающей среды (примечание 2)
*SOFT START TIME: 3 секунд
*Типичная РЕАКЦИЯ СИСТЕМЫ
*Внешняя регулировка напряжения: +/-10% с 1 ком 1 Вт триммер (см. Примечание 3)
*На основании частоты защиты: Задать точку 95% Гц (см. Примечание 4)

Устройство генератора переменного тока и его классификация

Конструктивно, электрогенератор состоит из:

  • Устройство и принцип работы ↓
  • Область применения ↓
  • Классификация ↓
  • Описание схем ↓
  • “Звезда” ↓
  • “Треугольник” ↓
  • Практическое применение ↓
  1. Токопроводящей рамки.
  2. Магнитов.

Работает он следующим образом:

  1. Токопроводящая рамка помещается в магнитное поле, созданное между полюсами магнитов. Ее концы снабжают контактными кольцами, которые также способны вращаться.
  2. С помощью упругих токопроводящих пластинок (щеток), кольца соединяют с электрической лампочкой.
  3. Рамка, вращаясь в магнитном поле, постоянно пересекает своими сторонами магнитные силовые линии.
  4. Пересечение рамкой магнитных силовых линий вызывает возникновение ЭДС и получение индукционного тока.
  5. Под действием полученного индукционного тока, лампочка начинает светиться. Свечение лампочки продолжается до тех пор, пока вращается рамка.
Читайте так же:
Стабилизатор тока из электронной нагрузки

Один полный оборот рамки внутри магнитного поля приводит к тому, что возникающая ЭДС, дважды меняет свое направление, причем ее величина дважды увеличивается до максимального значения (проводники проходили под полюсами магнитов) и дважды была равна нулю (проводники двигались вдоль силовых линий магнитного поля).

Такое изменение ЭДС в процессе непрерывного вращения рамки вызывает в замкнутой электрической цепи постоянно изменяющийся по направлению и величине синусоидальный электрический ток, который в настоящее время называют переменным.

В общем виде, такие устройства представляют собой достаточно сложное изделие, состоящее из медной проволоки, и большого количества изоляционных и конструктивных материалов.

Устройство и принцип работы

Любой генератор переменного тока состоит из:

  1. Постоянного тока или электромагнита, который создает магнитное поле. С целью получения мощного магнитного потока, в генераторах устанавливают специальные магнитные системы из двух сердечников, которые изготавливаются из электротехнической стали.
  2. Обмотки, в которой возникает переменная ЭДС. Обмотки, создающие магнитное поле, размещают в специальных пазах одного сердечника, а обмотки, в которых возникает ЭДС – в пазах другого.
  3. Для подвода питающего напряжения и съема полученного переменного тока, используются контактные кольца и щетки. Эти детали изготавливаются из токопроводящих материалов. Сила тока в обмотках электромагнита, создающего магнитное поле значительно меньше той, которую генератор отдает во внешнюю цепь, поэтому генерируемое напряжение удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить маломощное питающее напряжение.

Как правило:

  1. Внутренний сердечник (ротор) вместе с обмоткой вращается вокруг своей оси.
  2. Внешний сердечник (статор) неподвижен.
  3. Зазор между ротором и статором должен быть минимальным – только тогда мощность потока магнитной индукции максимальна. При этом, магнитное поле создает неподвижный магнит, а обмотки, в которых создается ЭДС, вращаются.

Однако, в больших промышленных генераторах, внешний сердечник, создающий магнитное поле, вращается вокруг внутреннего, а обмотки, в которых индуцируется ЭДС, остаются неподвижными.

Во время работы, в обмотке ротора возникает ЭДС, амплитуда которой пропорциональна количеству витков. Кроме того, она пропорциональна и амплитуде переменного магнитного потока (через виток).

Принцип работы синхронного генератора:

Область применения

Повседневную жизнь человеческого общества невозможно представить без переменного тока. Его широкое использование связано с тем, что он обладает огромными преимуществами перед постоянным.

При этом, главным преимуществом является то, что напряжение и силу переменного тока можно легко и практически без потерь преобразовать в достаточно широких пределах.

Особенно, такое преобразование необходимо в случае передачи электроэнергии на большие расстояния. Электроэнергия обладает большими преимуществами перед другими видами энергии.

Ее можно передавать на большие расстояния с малыми потерями и достаточно легко распределять между потребителями. Кроме того, электроэнергия просто превращается в другие виды энергии (световая, тепловая, механическая и пр.).

Именно поэтому, генераторы переменного тока в современных условиях получили очень широкое применение. С их помощью вырабатывается электроэнергия, которая затем используется во всех отраслях промышленности, а также в быту и на всех видах транспорта.

Классификация

В связи с большим разнообразием генераторов, выпускаемых промышленностью различных стран, была разработана и достаточно обширная система их классификации.

Так, генераторы переменного тока различают по:

  1. Виду.
  2. Конструкции.
  3. Способу возбуждения.
  4. Количеству фаз.
  5. Соединению фазных обмоток.

Электрогенераторы переменного тока бывают:

  1. Асинхронными. Изделия, в которых на вращающемся валу имеются пазы, предназначенные для размещения обмоток. Они генерируют электрический ток с небольшими искажениями, величина которого не превышает номинального значения. Изделия этого типа используются для электропитания бытовой техники.
  2. Синхронными. Изделия, в которых катушки индуктивности размещены непосредственно на роторе. Они способны выдавать ток, который обладает высокой пусковой мощностью.

Генератор с неподвижным ротором

Конструктивно различают генераторы:

  1. С неподвижным ротором.
  2. С неподвижным статором
Читайте так же:
Lm317 регулируемый стабилизатор тока схема

Конструкции с неподвижным статором получили наибольшее распространение благодаря тому, что отпадает необходимость в использовании контактных колец и плавающих щеток.

По способу возбуждения электрогенераторы бывают:

  1. С независимым возбуждением (питающее напряжение подается на обмотку возбуждения от отдельного источника постоянного тока).
  2. С самовозбуждением (обмотки возбуждения питаются выпрямленным (постоянным) током, получаемым от самого генератора).
  3. С обмотками возбуждения, питание которых осуществляется от стороннего генератора постоянного тока малой мощности, “сидящего” на одном валу с ним.
  4. С возбуждением от постоянного магнита.

По количеству фаз различают электрогенераторы:

  1. Однофазные.
  2. Двухфазные.
  3. Трехфазные.

Наибольшее распространение получили трехфазные генераторы.

Это связано с наличием некоторых преимуществ, среди которых нужно отметить возможность беспроблемного получения:

  1. Вращающегося кругового магнитного поля, что способствует экономичности их изготовления.
  2. Уравновешенной системы, что существенно повышает срок службы энергоустановок.
  3. Одновременно двух рабочих напряжений (фазного и линейного) в одной системе.
  4. Высоких экономических показателей – значительно уменьшается материалоемкость силовых кабелей и трансформаторов, а также упрощается процесс передачи электроэнергии на большие расстояния.

Трехфазные генераторы отличаются электрическими схемами соединения фазных обмоток.

Бывает, что фазные обмотки соединяются:

  1. “Звездой”.
  2. “Треугольником”.

Описание схем

Для получения связанной трехфазной системы, обмотки электрогенератора нужно соединить между собой одним из двух способов:

“Звезда”

Соединение “звездой” предусматривает электрическое соединение концов всех обмоток в одной точке. Точка соединения называется “нулем”. При таком соединении нагрузка к генератору может быть подключена 3 или 4 проводами.

Провода, идущие от начала обмоток называются линейными, а провод, идущий от нулевой точки – нулевым. Напряжение между линейными проводами называют линейным.

Линейное напряжение больше фазного в 1,73 раза.

Напряжение между нулевым и любым из линейных проводов называется фазным. Фазные напряжения равны между собой и сдвинуты друг относительно друга на угол, который равен 120 градусов.

Особенностью схемы является также равенство линейных и фазных токов.

Наиболее распространена 4 проводная схема – соединение “звездой” с нейтральным проводом. Она позволяет избежать перекоса фаз в случае подключения несимметричной нагрузки, например, на одной фазе – включена активная нагрузка, а на другой – емкостная или реактивная. При этом, обеспечивается сохранность включенных электроприборов.

“Треугольник”

Соединение “треугольником” – это последовательное соединение обмоток трехфазного генератора: конец первой обмотки соединяется с началом второй, ее конец – с началом третьей, а конец последней – с началом первой.

В этом случае, линейные провода отводятся от точек соединения обмоток. При этом, линейное напряжение равно фазному, а величина линейного тока в 1,73 раза больше фазного.

Практическое применение

Индукционные генераторы находят свое применение практически во всех областях жизнедеятельности человеческого общества.

Причем в любом случае, для получения переменного тока используется энергия вращения вала генератора.

Это касается:

  1. Крупных гидро-, тепло-, и атомных электростанций.
  2. Промышленных электрогенераторов.
  3. Бытовых электрогенераторов.

Генераторы, устанавливаемые на электростанциях, вырабатывают большое количество электроэнергии, которая затем передается на огромные расстояния.

Они разрабатываются под конкретные, узкоспециализированные задачи и представляют собой сложнейшие устройства, для установки которых необходимо строить отдельные здания и сооружения. Кроме того, их работа обеспечивается специально организованной инфраструктурой.

Кроме того, их используют для обеспечения электроэнергией строительных площадок, вахтовых поселков, удаленных ферм и буровых установок, находящихся в местах, где подводка стационарных линий электропередач невозможна или экономически нецелесообразна.

Как правило, для работы они используют дизельное топливо, вырабатывая при этом переменный ток большой мощности (220 или 380 В). Используются для этого синхронные генераторы, которые способны обеспечить работу промышленного оборудования большой мощности.

В дизельных установках, вал генератора вращается с помощью двигателя внутреннего сгорания (ДВС).

Электрогенератор на шасси

Все комплектующие изделия, входящие в состав промышленного генератора, монтируются на высокопрочных стальных шасси, которое при необходимости устанавливается:

  1. Теплоизолированным контейнером.
  2. Передвижным шасси (колесное, на полозьях).

Бытовые электрогенераторы приобрели большую популярность сравнительно недавно.

Читайте так же:
Простой стабилизатор тока своими руками

Они используются для электрификации небольших коттеджей, загородных домов и дач, а также помогают решить ряд проблем, связанных с некорректной работой централизованной электросети и часто применяются в качестве аварийных источников переменного тока на ранее электрифицированных объектах подобного типа.

В устройствах этого типа для вращения вала генератора используют как бензиновые, так и дизельные ДВС. Они вырабатывают переменный ток небольшой мощности (от 0,5 до 15 кВт) и отличаются:

  1. Экономичностью.
  2. Небольшими размерами.
  3. Низким уровнем шума.

При выборе бытового генератора переменного тока, потенциальному потребителю необходимо обращать внимание на:

  1. Тип ДВС (бензиновый или дизельный).
  2. Заявленную в сопроводительной документации мощность.
  3. Тип генератора (синхронный или асинхронный).
  4. Фазность.
  5. Блок управления.
  6. Уровень шума.

Общее устройство генератора

Генератор переменного тока это элемент автомобиля, предназначенный для произведения электрической энергии путем преобразования механической энергии (вращение коленчатого вала) в электрическую энергию. Генераторы могут генерировать постоянный или переменный ток.

Генератор автомобиля используется, как источник питания для следующих электропотребителей: система зажигания, приборы освещения, бортовой компьютер, системы диагностики. Также генератор обеспечивает подзарядку аккумуляторной батареи (АКБ) во время движения автомобиля.

На сегодняшний день чаще всего используются генераторы переменного тока, которые хорошо себя зарекомендовали.

Как работает генератор?

Чтобы ответить на вопрос, — как работает генератор? — мы рассмотрим Принцип работы генератора.

Основа работы генератора заключается в использовании электродвижущей силы (ЭДС), которая образуется в прямоугольном контуре, вращающемся в однородном вращающемся магнитном поле.

Устройство простейшего генератора

Простейший генератор представляет собой обыкновенную прямоугольную рамку, которая размещена между магнитами с разными полюсами. Для снятия напряжения с вращающейся рамки используют токосъемные кольца.

В автомобилестроение используют электромагниты – катушки индуктивности или обмотки медного провода. При прохождении электрического тока через обмотку, последняя насыщается электромагнитными свойствами. Для возбуждения обмотки используется аккумуляторная батарея.

Устройство автомобильного генератора переменного тока

Автомобильный генератор состоит из корпуса с крышками, в которых имеются отверстия для вентиляции. Ротор устанавливается в подшипниках 2 и вращается в них. Привод ротора осуществляется путем ременной передачи (ремень одевается на шкив). Ротор выступает электромагнитом (обмоткой). Ток на обмотку поступает с помощью двух медных колец и графитных щеток, которые соединены с электронным регулятором. Электронный реле регулятор отвечает за напряжение на выходе, которое должно находиться в пределах 12 Вольт вне зависимости от частоты вращения шкива привода генератора. Реле регулятор может встраиваться в корпус, а может находиться отдельно.

Статор – представляет собой три медные обмотки, которые соединяются в треугольник. К точкам соединения обмоток подключается выпрямительный мост, который состоит из 6 полупроводниковых диодов, которые служат для преобразования переменного напряжения в постоянное.

Генера́тор (с латыни generator означает «производитель») — устройство, что вырабатывает электроэнергию, производит продукты или преобразует один вид энергии в другой.

Автомобильный генератор — устройство, которое преобразует механическую энергию вращения коленчатого вала двигателя автомобиля в электрическую.

Автомобильный генератор применяется для питания потребителей электроэнергии, таких как система зажигания, приборы освещения, бортовой компьютер автомобиля, системы диагностики, а также для зарядки аккумуляторной батареи (АКБ).

От надежности работы генератора зависит бесперебойность работы остальных систем автомобиля и других его компонентов. Мощность современного автомобильного генератора составляет 1 кВт.

Принцип работы автомобильного генератора

Первые автомобильные генераторы были генераторы постоянного тока. Они требовали много внимания к себе, что обуславливалось частым обслуживанием и контролем работы устройства.

Затем был придуманы диодные выпрямители, что значительно увеличило ресурс работы генератора и увеличило срок его работы. Генераторы с диодными выпрямителями тока стали называться генераторами переменного тока. На производство генератора переменного тока уходило меньше материалов, соответственно он стал легче и значительно меньше, а КПД вырос, обеспечивая более стабильный ток на выходе.

В современных иномарках используют синхронные трехфазные генераторы переменного тока, а в качестве выпрямителя – трехфазный выпрямитель Ларионова.

Читайте так же:
Ne555 в стабилизаторах тока

От поворота ключа до выдачи напряжения…

Во время поворота ключа замка зажигания в рабочее положение питание подается на обмотку возбуждения и генератор начинает отдавать ток в нагрузку. За управление током в обмотке возбуждения отвечает стабилизатор напряжения, который входит в щеточный узел генератора. Питание стабилизатора напряжения осуществляется от выпрямителя.

Ротор генератора приводится во вращение от коленчатого вала через шкив посредством клинового ремня. В обмотке возбуждения создается электромагнитное поле, которое индуцирует электрический ток в фазовых обмотках статора.

Выдаваемый ток – скачкообразный и зависит от частоты вращения коленчатого вала двигателя, поэтому для его стабилизации применяется стабилизатор напряжения.

Напряжение бортовой сети в работающей системе должно находится в пределах 13,8-14,2 В, что обеспечит нормальную подзарядку АКБ.

На крупногабаритных автомобилях используются автомобильные генераторы повышенной мощности 24 В.

Стабилизаторы напряжения для генератора

Стабилизатор напряжения для бензинового или дизельного генератора улучшает качество его выходного напряжения и позволяет исключить ложные срабатывания системы АВР генераторной установки при кратковременных просадках сетевого напряжения.

В интернет-магазине российского производителя ГК «Штиль» представлены модели инверторных стабилизаторов напряжения для генераторов, разработанные по новейшим технологиям. Главная особенность устройств – двойное преобразование энергии, которое обеспечивает на выходе стабилизатора напряжение с идеальной синусоидальной формой и точным значением. В линейке представлены решения с универсальной установкой: вертикальной (напольной) или горизонтальной (стоечной).

Широкий диапазон входного напряжения

Высокая точность стабилизации

Идеальная синусоидальная форма выходного напряжения

Полная электронная защита

Автоматический перезапуск при восстановлении после аварий

Полное цифровое управление

Встроенный электронный байпас

Совместимость с генераторами

Высокая перегрузочная способность

Широкие возможности мониторинга

Большой срок службы

Фильтр

Особенности стабилизаторов для генератора от ГК «Штиль»

Модели инверторных стабилизаторов для генераторов от ГК «Штиль» пользуются большой популярностью на российском рынке за счёт широкого набора технических и функциональных особенностей, в частности:

  • инновационного алгоритма работы ККМ (корректора коэффициента мощности), позволяющего решить проблему совместной работы генератора и ИБП;
  • большой перегрузочной мощности (до 150%), которая позволяет справляться с высокими пусковыми токами подключенных нагрузок;
  • встроенной варисторной защиты, которая препятствует воздействию на нагрузку мощных импульсных помех, вызванных в том числе грозовыми разрядами;
  • эргономичного дизайна корпуса, подходящего для интерьера практически любых помещений;
  • светодиодной индикации и ЖК-дисплея для удобного контроля состояния сети и настройки параметров работы устройства;
  • прочного металлического корпуса для защиты от механических повреждений;
  • нескольких вариантов настройки значения выходного напряжения (в зависимости от модели): самостоятельно на панели управления устройства (в диапазоне 220-240 В) или на заводе при заказе (220 или 230 В);
  • принудительного охлаждения с помощью вентиляторов с адаптивной скоростью вращения;
  • встроенного в стабилизатор электронного байпаса, выполняющего автоматический перевод питания нагрузки на сеть, если стабилизатор перегружен или вышел из строя один из его узлов;
  • простого способа подключения к генераторной установке – с помощью клемм или кабеля с трехполюсной вилкой (в зависимости от модели);
  • возможности установки карт мониторинга для удаленной настройки и контроля работы прибора (интерфейсы RS-232, USB, Ethernet и RS-485).

Где купить стабилизатор напряжения для генератора?

Купить любую модель стабилизатора напряжения для генератора можно в нашем интернет-магазине официального производителя. Если у вас появятся вопросы по подбору и правильному подключению оборудования, пожалуйста, напишите нашим инженерам на адрес sales@shtyl.ru. Они предоставят подробную консультацию и предложат лучшее решение для ваших задач.

На все модели инверторных стабилизаторов установлены конкурентоспособные цены. Для оптовых покупателей в нашем магазине действуют специальные условия.

Российский производитель систем электропитания ГК «Штиль» всегда рад сотрудничеству и предлагает заинтересованным юридическим лицам принять участие в партнерской программе, в рамках которой можно стать официальным дилером по продаже стабилизаторов напряжения и других систем электропитания. Для этого требуется заполнить специальную форму в разделе регистрация партнера или написать нам на sales@shtyl.ru.

Читайте так же:
Как правильно подключить стабилизатор тока

Почему стабилизатор необходим для генератора?

Генераторы с автоматической системой запуска становятся всё популярнее. Они моментально срабатывают при отключении электроэнергии, обеспечивая бесперебойное электропитание нагрузки. Однако в реалиях российской энергосистемы, если совместно с генератором не установить стабилизатор напряжения, функция автозапуска может стать причиной повышенного расхода топлива и быстрого износа генератора, а некорректное выходное напряжение будет наносить вред нагрузке.

Защита от повышенного расхода топлива и быстрого износа

Суть проблемы заключается в том, что полное отключение электроэнергии встречается не часто, более распространены колебания сетевого напряжения. При этом падения даже до 160-170 В достаточно для автоматического включения генератора. То есть, устройство будет работать и расходовать топливо при наличии электричества в сети, которое можно просто отрегулировать до нужных параметров.

Автоматическая система запуска включает генератор и при повышенном напряжении – более 230 В. Конечно, параметры сети чаще падают, чем поднимаются, но в непосредственной близости от промышленных предприятий скачки напряжения выше нормы являются привычным явлением.

Еще одна распространенная причина автоматического запуска генераторной установки – кратковременный, буквально на доли секунды, перерыв в электропитании, после которого напряжение в сети восстанавливается.

Стоит отметить, что системы запуска современных генераторов при появлении электричества останавливают работу устройства. Но, во-первых, такая функция есть не у всех моделей, а, во-вторых, система может просто не уловить момент включения сетевого питания после молниеносного обрыва, вследствие чего электростанция продолжит работать, расходуя топливо без необходимости.

Стабилизатор напряжения, нейтрализующий сетевые скачки, решит перечисленные выше проблемы. Получая напряжение с выхода стабилизатора, генератор запустится только в случае действительного отключения электроэнергии. Следовательно, использование автоматизированного генератора в связке со стабилизатором позволит избежать лишних запусков устройства, что защитит его механические элементы от преждевременного износа и заметно сократит расход топлива. Вышесказанное позволяет уверенно утверждать – приобретение качественного стабилизатора напряжения быстро окупит себя!

Корректировка формы и значения выходного напряжения

Ещё одной из причин необходимости использования бензинового или дизельного генератора в связке со стабилизатором является низкое качество вырабатываемого генератором напряжения.

Форма выходного напряжения у бюджетных генераторов, как правило, оставляет желать лучшего. Обычно это аппроксимированная синусоида.

Непостоянное значение выходного напряжения – еще один серьезный недостаток многих простых генераторов. Так, увеличение нагрузки потребления (например, при включении электродвигателей с высокими пусковыми токами) приводит к снижению скорости вращения вала у двигателя внутреннего сгорания, что в свою очередь обуславливает падение напряжения на выходе генератора.

«Чистый синус» и стабильное значение напряжения на выходе можно получить, используя генераторы со встроенным инвертором и системой контроля и коррекции напряжения. Такие приборы естественно не нуждаются в дополнительном устройстве стабилизации, однако превышают в несколько раз по своей стоимости более простые аналоги. Применение же бюджетных генераторов с модифицированной синусоидой, частотой и напряжением на выходе без стабилизатора напряжения будет обоснованным только для нетребовательной к качеству питания нагрузки.

Какие существуют варианты подключения стабилизатора к генератору?

Стабилизатор перед генератором

Для устранения ложных запусков генератора при возникновении малейших колебаний напряжения в сети стабилизатор напряжения подключается перед генератором в последовательности: питающая сеть-стабилизатор напряжения-генератор-нагрузка.

Сглаживая скачки напряжения в основной питающей сети и незначительные по времени перебои в питании, стабилизатор гарантированно исключит возможность ложных срабатываний системы АВР и запусков генератора.

Стабилизатор после генератора

Имея дело с некачественным напряжением на выходе генератора, подключение стабилизатора должно быть выполнено после него в следующей последовательности: питающая сеть-генератор-стабилизатор напряжения-нагрузка.

Такой способ подключения будет востребованным при использовании многих бюджетных бензиновых и дизельных генераторов с низким качеством вырабатываемого напряжения, не имеющих систем автоматической стабилизации напряжения.

голоса
Рейтинг статьи
Ссылка на основную публикацию