Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплота выделяющаяся под действием тока

Теплота выделяющаяся под действием тока

Вы уже хорошо знаете, что при прохождении электрического тока нить лампы накаливания нагревается настолько сильно, что начинает излучать видимый свет. Благодаря действию электрического тока нагреваются утюг и электрическая плита. А вот вентилятор и пылесос нагреваются незначительно, не становятся очень горячими (конечно, если все в порядке) и подводящие провода. От чего же зависит тепловое действие тока?

Рассуждаем о тепловом действии тока

Прохождение электрического тока всегда сопровождается выделением теплоты, и этот факт нетрудно объяснить.

Когда в проводнике идет ток, то свободные заряженные частицы, двигаясь под действием электрического поля, сталкиваются с другими частицами и передают им часть своей энергии. Электроны в металлах сталкиваются с ионами, расположенными в узлах кристаллической решетки, ионы в электролитах — с другими ионами, атомами или молекулами. В результате средняя скорость хаотичного (теплового) движения частиц вещества увеличивается — проводник нагревается. По закону сохранения энергии кинетическая энергия, приобретенная свободными заряженными частицами в результате действия электрического поля, преобразуется во внутреннюю энергию проводника.

Очевидно: чем чаще сталкиваются частицы, то есть чем больше сопротивление проводника, тем больше энергии передается проводнику и тем сильнее он нагревается. Таким образом, при неизменной силе тока количество теплоты, выделяющееся в проводнике при прохождении тока, прямо пропорционально сопротивлению проводника.

Кроме того, с увеличением в проводнике силы тока количество выделяемой теплоты тоже увеличивается. Ведь чем больше частиц проходит через поперечное сечение проводника за единицу времени, тем больше столкновений частиц происходит.

|2 Открываем закон Джоуля — Ленца

Тепловое действие тока изучали на опытах английский ученый Дж. Джоуль(рис. 34.1) и российский ученый немецкого происхождения

Э. Х. Ленц(рис. 34.2). Независимо друг от друга они пришли к одинаковому выводу, который позже получил название закон Джоуля — Ленца:

Количество теплоты, выделяющееся в проводнике при прохождении тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока:

На рис. 34.3 изображена схема опыта, доказывающего справедливость закона Джоуля — Ленца. Попробуйте описать этот опыт.

Закон Джоуля — Ленца был установлен экспериментально. Теперь же, зная формулу для расчета работы тока (A = UIt), данный закон можно вывести с помощью простых математических выкладок.

Если на участке цепи, в котором течет ток, не выполняется механическая работа и не происходят химические реакции, результатом работы тока будет только нагревание проводника. Нагретый проводник путем теплопередачи отдает полученную энергию окружающим телам. Следовательно, в данном случае согласно закону сохранения энергии количество выделенной теплоты Q будет равно работе A тока: Q = A.

Обращаем внимание на некоторые особенности вычисления количества теплоты

Для получения математического выражения закона Джоуля — Ленца мы воспользовались некоторыми предположениями. Исследования показали, что в любом случае количество теплоты, выделяющееся в участке цепи в результате прохождения тока, можно вычислить по формуле Q = 1 2 Rt.

Возникает вопрос: что делать, если сила тока неизвестна, а известно напряжение на концах участка цепи? Казалось бы, можно воспользоваться законом Ома. Действительно,

После сокращения на R получим:

Однако этой формулой, впрочем как и формулой Q = UIt, можно воспользоваться только в том случае, когда вся электрическая энергия расходуется на нагревание.

Если же на участке цепи есть потребители энергии, в которых выполняется механическая работа или происходят химические реакции, U 2

Читайте так же:
Номинальный тепловой ток 10а

формулы Q =— t и Q = UIt использовать нельзя. В таких случаях при-R

меняют более сложные математические выражения, учитывающие всю совокупность явлений.

Учимся решать задачи

Задача. Определите сопротивление нагревателя, с помощью которого можно за 5 мин довести до кипения 1,5 кг воды, взятой при температуре 12 °С. Напряжение в сети равно 220 В, КПД нагревателя — 84 %.

Анализ физической проблемы. Когда в нагревателе проходит электрический ток, выделяется количество теплоты Qiioth. Часть ее (QnOTe3H) расходуется на нагревание воды до кипения, то есть до 100 °С.

Выразив Qhoth и Qnmesn через указанные в условии задачи величины, найдем искомую величину. Значение удельной теплоемкости с воды найдем в соответствующей таблице (см. табл. 1 Приложения).

Прохождение тока в проводнике сопровождается выделением теплоты. Количество теплоты, выделяющееся в проводнике при прохождении тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока: Q = I 2 Rt (закон Джоуля — Ленца).

1. Почему нагреваются проводники, в которых течет электрический ток?

2. Сформулируйте закон Джоуля — Ленца. Почему он имеет такое название? 3. Как математически записывается закон Джоуля — Ленца?

4. Какие формулы для расчета количества теплоты, выделяющегося

в проводнике при прохождении тока, вы знаете? Всегда ли можно ими

1. Сколько теплоты выделится за 10 мин в электроплите, если сопротивление нагревательного элемента плиты равно 30 Ом, а сила тока в нем 4 А?

2. Два проводника сопротивлениями 10 и 20 Ом включены в сеть напряжением 100 В. Какое количество теплоты выделится за 5 с в каждом проводнике, если они соединены параллельно?

3. Почему электрические провода, по которым подается напряжение к электрической лампе накаливания, не нагреваются, а нить накала лампы нагревается и ярко светится?

4. Электрокипятильник за 5 мин нагревает 0,2 кг воды от 14 °С до кипения при условии, что в его обмотке течет ток силой 2 А. Определите напряжение, поданное на электрокипятильник. Потерями энергии пренебречь.

5. В каждый из двух калориметров налили 200 г воды при температуре 20 °С. В один калориметр поместили нагреватель сопротивлением 24 Ом, во второй — сопротивлением 12 Ом. Нагреватели соединили последовательно и подключили к источнику тока (см. рис. 34.3). Определите температуру воды в каждом калориметре после нагревания, если оно длилось 7 мин при неизменной силе тока в цепи 1,5 А. Потерями энергии пренебречь.

6. Какой длины нихромовый провод нужно взять, чтобы сделать электрический камин, работающий при напряжении 120 В и выделяющий 1 МДж теплоты в час? Диаметр провода 0,5 мм.

7. Сравните количества теплоты, которые необходимо затратить, чтобы расплавить медный и свинцовый провода, если эти провода имеют одинаковую массу и взяты при температуре 27 °С.

Нагревание проводников электрическим током. Закон Джоуля–Ленца
презентация к уроку по физике (8 класс) на тему

Урок физики в 8-м классе по теме

«Нагревание проводников электрическим током. Закон Джоуля–Ленца»

В архиве находится разработка урока +презентация по теме

Скачать:

ВложениеРазмер
urok_fiziki_8_klass.nagrevanie_provodnikov_elektricheskim_tokom._zakon_dzhoulya-lenca.rar721.48 КБ

Предварительный просмотр:

МКОУ Боровская ООШ

Урок физики в 8-м классе по теме

«Нагревание проводников электрическим током. Закон Джоуля–Ленца»

Выполнил: Тоболов А.Н.

учитель МКОУ Боровская ООШ

Урок физики в 8-м классе по теме

«Нагревание проводников электрическим током. Закон Джоуля–Ленца»

  1. объяснить явление нагревания проводников электрическим током;
  2. установить зависимость выделяющейся при этом тепловой энергии от параметров электрической цепи;
  3. сформулировать закон Джоуля – Ленца;
  4. формировать умение применять этот закон для решения качественных и количественных задач.

Тип урока: комбинированный.

  1. Образовательные:
  1. опираясь на знания, полученные ранее, аналитически установить связь выделяющейся тепловой энергии на проводнике с силой тока и сопротивлением проводника;
  2. анализируя опыты, установить эту же зависимость;
  3. опираясь на известные формулы, теоретически определить количество теплоты, выделяющейся на проводнике с током;
  4. подтвердить полученные выводы результатами экспериментов;
  5. сформулировать закон Джоуля – Ленца;
  6. формировать умение применять этот закон для решения задач.
  1. Воспитательные :
  1. содействовать формированию мировоззренческой идеи познаваемости явлений и свойств окружающего мира;
  2. формировать умение работать в группах, уважительно относиться друг к другу, прислушиваться к мнению товарищей;
  3. побуждать использовать полученные на уроках знания в повседневной жизни.
  1. Развивающие :
  1. показать учащимся различные пути и методы получения знаний об окружающем нас мире;
  2. формировать умение обобщать и анализировать опытный материал, самостоятельно делать выводы.

Оборудование: компьютер, презентация к уроку

  1. Организационный момент.

Проверить готовность к уроку.

Цель урока (Слайд 2)

  1. Активизация знаний.

Решить задачу (устно)

Какую работу совершит ток силой 5 А за 2 с при напряжении в цепи 10 В?

Вспомним некоторые вопросы, которые потребуются, чтобы изучить новую тему:

1. Какие три величины связывают закон Ома?

(I, U, R; сила тока, напряжение, сопротивление.)

2. Как формулируется закон Ома?

(Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.)

3. Что представляет собой электрический ток в металлах?

(Эл-ий Ток в металлах представляет собой упорядоченное движение свободных электронов )

4. Какова зависимость силы тока от напряжения?

( Во сколько раз увеличивается напряжение в цепи, во столько же раз увеличивается и сила тока)

5. Как выразить работу тока за некоторое время?

6. Как рассчитать мощность электрического тока?

7. При каком соединении все потребители находятся при одной и той же силе тока?

(При последовательном соединении)

  1. Новый материал.

На (слайде 4) изображены электроприборы(потребители электрического тока):

утюг, электроплитка, электрическая лампа, электрическая дрель, электрический чайник, паяльник
вопросы к учащимся:

Назвать приборы изображенные на слайде.

Какой прибор не вписывается в общий ряд? Уберите лишний.

Чем вы руководствовались, делая выбор?

Какое действие электрического тока проявляется в выбранных приборах?

Выяснить, почему проводники нагреваются? (слайд 5)

Электрический ток в металлическом проводнике – это упорядоченное движение

электронов. Провод — это кристалл из ионов, поэтому электронам приходится «течь»

между ионами, постоянно наталкиваясь на них. При этом часть кинетической энергии электроны передают ионам, заставляя их колебаться сильнее. Кинетическая энергия

ионов увеличивается, следовательно увеличивается внутренняя энергия проводника,

и следовательно его температура. А это и значит что, проводник нагревается

От каких величин зависит нагревание проводника? (слайд 6)

Многочисленные опыты показывают, что чем больше сила тока в проводнике тем и количество теплоты, выделившееся в проводнике будет больше. Значит, нагревание проводника зависит от силы тока (I).

(Чем больший электрический заряд пройдет через поперечное сечение проводника в единицу времени, тем большее количество теплоты он выделит)

Но не только сила тока отвечает за то, что выделяется большое количество теплоты.

Был проведен эксперимент. (демонстрация ?)

(Были взяты 3 проводника одинаковой длины и площади поперечного сечения, но из разного вещества. Все проводники соединены между собой последовательно. Следовательно, сила тока на всех участках цепи одинаковая. Но при включении в цепь все 3 проводника выделили разное количество теплоты.

Следовательно, количество теплоты зависит не только от силы тока, но и от того, из какого вещества изготовлен проводник. Точнее — от электрического сопротивления проводника (R)

(Сравнить удельное сопротивление проводников в таблице)

Вопр. Что нужно чтобы проводник нагревался сильнее?

Вывод: Чтобы проводник нагревался сильнее, он должен обладать большим удельным сопротивлением.

От чего зависит количество теплоты в проводнике с током?

Вывод: Количество теплоты, которое выделяется при протекании электрического тока по проводнику, зависит от силы тока в этом проводнике и от его электрического сопротивления.

Закон, определяющий тепловое действие тока – ЗАКОН ДЖОУЛЯ-ЛЕНЦА

Рассказать о английском физике Джеймсе Прескотте Джоулье (1818-1889 гг.)

и русском физике Ленц Эмилий Христианович (1804 – 1865)

Как записывается закон Джоуля-Ленца

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.

Q – количество теплоты — [Дж]

I – сила тока – [A]

R – сопротивление – [Ом]

Формулу, которую мы получили, в точности соответствует формуле, которую мы изучили ранее. Это формула работы электрического тока

A=UIt из закона Ома I=U/R следует U=IR следовательно A=IRIt что соответствует закону Джоуля-Ленца Q=I 2 Rt

Вывод: Количество теплоты электрического тока равно работе электрического тока.

1) В чем проявляется тепловое действие тока?

(В нагревании проводника)

2) Как можно объяснить нагревание проводника с током?

(Движущиеся электроны взаимодействуют с ионами кристаллической решетки и передают им свою энергию)

3) Какие превращения энергии происходят при протекании тока через проводник?

(Электрическая энергия превращается во внутреннюю)

4) Как по закону Джоуля – Ленца рассчитать количество теплоты, выделяемое в проводнике?

  1. Решение задач

Определить количество теплоты, выделяемое проводником, сопротивление которого 35 Ом, в течении 5 минут. Сила тока в проводнике 5 А.

Теплота выделяющаяся под действием тока

Через две тонкие проволоки 1 и 2 с одинаковыми поперечными сечениями, изготовленные из одинакового материала, течёт постоянный ток. На рисунке изображены два графика зависимости изменения температуры этих проволок от времени.

Используя эти графики, из предложенного перечня утверждений выберите два правильных. Укажите их номера.

1) Длина проволоки 1 больше длины проволоки 2.

2) Сила тока в проволоке 1 больше силы тока в проволоке 2.

3) Сопротивление проволоки 1 меньше сопротивления проволоки 2.

4) Мощность, выделяющаяся в проволоке 1, больше мощности, выделяющейся в проволоке 2.

5) Температуры плавления проволока 2 достигнет позже, чем проволока 1.

По закону Джоуля — Ленца, теплота, выделяющаяся в проводнике, равна Учитывая, что сопротивление проволоки с током рассчитывается по формуле где — удельное сопротивление проволоки, получаем Теплота, переданная телу, вычисляется по формуле Масса тела равна произведению плотности на объём Выразим для первого и второго тел из двух уравнений для теплоты:

Из графика видно, что температура растёт быстрее, чем то есть за одно и то же время

Сила тока в первой проволоке больше силы тока во второй. Температура первой проволоки растёт быстрее, поэтому и точки плавления она достигнет быстрее, чем вторая. О мощности судить невозможно, так как неизвестны ни напряжение, ни длина проводников.

Постоянный ток — общие понятия, определение, единица измерения, обозначение, параметры

Постоянный ток — электрический ток, не изменяющийся по времени и по направлению. За направление тока принимают направление движения положительно заряженных частиц. В том случае, если ток образован движением отрицательно заряженных частиц, направление его считают противоположным направлению движения частиц.

Строго говоря, под «постоянным электрическим током» следовало бы понимать «электрический ток постоянный по величине», соответственно математическому понятию «постоянная величина». Но в электротехнику этот термин был введен в значении «электрического тока, постоянного по направлению и практически постоянного по величине».

Под «практически постоянным по величине электрическим током» понимают ток, изменения которого во времени столь незначительны по величине, что при рассмотрении явлений в электрической цепи, по которой проходит такой электрический ток, этими изменениями вполне можно пренебречь, а следовательно, можно не учитывать ни индуктивности, ни емкости электрической цепи.

Наиболее распространенные источники постоянного тока — гальванические элементы, аккумуляторы, генераторы постоянного тока и выпрямительные установки.

В электротехнике для получения постоянного тока используют контактные явления, химические процессы (первичные элементы и аккумуляторы), электромагнитное наведение (электромашинные генераторы). Широко применяется также выпрямление переменного тока или напряжения.

Из всех источников э. д. с. химические и термоэлектрические источники, а также так называемые униполярные машины являются идеальными источниками постоянного тока. Остальные устройства дают пульсирующий ток, который при помощи специальных устройств в большей или меньшей мере сглаживается, лишь приближаясь к идеальному постоянному току.

Для количественной оценки тока в электрической цепи служит понятие силы тока.

Сила тока — это количество электричества Q, протекающее через поперечное сечение проводника в единицу времени.

Если за время I через поперечное сечение проводника переместилось количество электричества Q, то сила тока I=Q/ t

Единица измерения силы тока — ампер (А).

Плотность тока — это отношение силы тока I к площади поперечного сечения F проводника — I/F. (12)

Единица измерения плотности тока — ампер на квадратный миллиметр (А/мм 2 ).

В замкнутой электрической цепи постоянный ток возникает под действием источника электрической энергии, который создает и поддерживает на своих зажимах разность потенциалов, измеряемую в вольтах (В).

Зависимость между разностью потенциалов (напряжением) на зажимах электрической цепи, сопротивлением и током в цепи выражается законом Ома . Согласно этому закону для участка однородной цепи сила тока прямо пропорциональна значению приложенного напряжения и обратно пропорциональна сопротивлению I = U/R ,

где I — сила тока. A, U— напряжение на зажимах цепи В, R — сопротивление, Ом

Это самый важный электротехнический закон. Подробнее о нем смотрите здесь: Закон Ома для участка цепи

Работу, совершаемую электрическим током в единицу времени (секунду), называют мощностью и обозначают буквой Р. Эта величина характеризует интенсивность совершаемой током работы.

Мощность P=W/t= UI

Единица измерения мощности — ватт (Вт).

Выражение мощности электрического тока можно преобразовать, заменив на основании закона Ома напряжение U произведением IR. В результате получим три выражения мощности электрического тока P = UI= I 2 R= U 2 /R

Большое практическое значение имеет то, что одну и ту же мощность электрического тока можно получить при низком напряжении и большой силе тока или при высоком напряжении и малой силе тока. Этот принцип используют при передаче электрической энергии на расстояния.

Ток, протекая по проводнику, выделяет теплоту и нагревает его. Количество теплоты Q, выделяющейся в проводнике определяют формулой Q = I 2 Rt.

Эту зависимость называют законом Джоуля — Ленца .

На основании законов Ома и Джоуля — Ленца можно проанализировать опасное явление, которое часто возникает при непосредственном соединении между собой проводников, подводящих электрический ток к нагрузке (электроприемнику). Это явление называют коротким замыканием , так как ток начинает протекать более коротким путем, минуя нагрузку. Такой режим является аварийным.

На рисунке приведена схема включения лампы накаливания E L в электрическую сеть. Если сопротивление лампы R — 500 Ом, а напряжение сети U = 220 В, то ток в цепи лампы будет I = 220/500 = 0,44 А.

Схема, поясняющая возникновение короткого замыкания

Рассмотрим случай, когда провода, идущие к лампе накаливания, соединены через очень малое сопротивление ( R ст — 0,01 Ом), например толстый металлический стержень. В этом случае ток цепи, подходя к точке А, будет разветвляться по двум направлениям: большая его часть пойдет по пути с малым сопротивлением — по металлическому стержню, а небольшая часть тока I л.н — по пути с большим сопротивлением — лампе накаливания.

Определим ток, протекающий по металлическому стержню: I = 220/0,01 =22 000 А.

При коротком замыкании (к.з) напряжение сети будет меньше 220 В, так как большой ток в цепи вызовет большую потерю напряжения, и ток, протекающий по металлическому стержню, будет несколько меньше, но тем не менее во мною раз превышать ток, потреблявшийся ранее лампой накаливания.

Как известно, в соответствии с законом Джоуля-Ленца ток, проходя по проводам, выделяет теплоту, и провода нагреваются. В нашем примере площадь поперечного сечения проводов рассчитана на небольшой ток 0,44 А.

При соединении проводов более коротким путем, минуя нагрузку, по цепи будет протекать очень большой ток — 22000 А. Такой ток вызовет выделение большого количества теплоты, что приведет к обугливанию и возгоранию изоляции, расплавлению материала проводов, порче электроизмерительных приборов, оплавлению контактом выключателей, ножей рубильнике и т. п.

Источник электрической энергии, питающий такую цепь, может быть поврежден. Перегрев проводов может вызвать пожар. Вследствие этого при монтаже и эксплуатации электрических установок, чтобы предупредить непоправимые последствия короткого замыкания, необходимо соблюдать следующие условии: изоляция проводов должна соответствовать напряжению сети и условиям работы.

Площадь поперечною сечения проводов должна быть такой, чтобы нагревание их при нормальной нагрузке не достигало опасного значения. Места соединений и ответвлений проводов должны быть качественно выполнены и хорошо изолированы. В помещении провода должны быть проложены так, чтобы они были защищены от механических и химических повреждений и от сырости.

Чтобы избежать внезапного, опасного увеличения тока в электрической цепи при коротком замыкании, ее защищают с помощью предохранителей или автоматических выключателей.

Существенный недостаток постоянного тока состоит в том, что его напряжение сложно повысить. Это затрудняет передачу электрической энергии на постоянном токе на большие расстояния.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

голоса
Рейтинг статьи
Ссылка на основную публикацию