Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловое действие тока что это кратко

Принцип работы ветрогенератора

  • Особенности устройства ветрогенератора
  • Конструкция ветряных генераторов
  • Модификации ветряного генераторного оборудования
  • Особенности использования

Поиск альтернативных способов получения энергии ведется уже немало лет. Одной из разновидностей такого оборудования являются ветрогенераторы, которые способны вырабатывать электроэнергию благодаря ветру. Принцип работы ветрогенератора основывается на возможности энергии переходить из одного вида в другой.

Данное оборудование функционирует следующим образом: ветер обладает кинетической энергией, которая способна превращаться в механическую энергию ротора. Далее устройство превращает механическую энергию в электрическую. Таким образом можно получать электроэнергию бесплатно. Мощность ветряных электростанций может варьироваться в пределах 5-4500 кВт. Сегодня разработано оборудование, которое способно вырабатывать электроэнергию даже при очень слабой ветровой скорости 4 м/с.

Принцип работы ветряка достаточно прост, поэтому такое оборудование можно изготовить самостоятельно. Использование данного оборудования предоставит возможность не только экономить на оплате электроэнергии, но и продавать ее на условиях «зеленого тарифа» государству. Данный способ получения энергии подходит для любых объектов, находящихся в местности без централизованного энергоснабжения либо может быть использован в качестве дополнительного источника. Он является оптимальным выбором и позволяет электрифицировать автономно любой объект.

Особенности устройства ветрогенератора

Данное оборудование имеет лопасти, которые приводятся в движение вследствие воздействия силы ветра. Данное вращение запускает турбину, которая также начинает вращаться. В турбине начинает генерироваться энергия, мощность которой определяется силой ветра. С ростом ветровой энергии увеличивается и механическая, вырабатываемая турбиной.

Устройство ветрогенератора может отличаться наличием или отсутствием мультипликатора на роторе. Если он предусмотрен, энергия от турбины передается ему. Назначением мультипликатора является ускорение вращения оси. Установки без этого оборудования являются более эффективными, поскольку в них не происходит генерации дополнительной энергии (для ускорения вращения оси), а значит, и ее растраты. Такому оборудованию вполне достаточно ветровой энергии для полноценного функционирования.

Принцип работы ветряной электростанции позволил получать электроэнергию альтернативным способом и обеспечить автономность каждого объекта. Мощность данного оборудования полностью определяется размерами его лопастей. Чем больше их площадь, тем выше мощность можно получить, используя принцип работы ветроустановки.

Расчет мощности ветряного оборудования производится на основе кубической зависимости скорости ветряного потока. Кубическая зависимость означает, что если ветровой поток скорости, условно 6 м/сек, обеспечивает мощность установки 100 Вт, то увеличение потока до 12 м/сек приведет к возрастанию мощности в восемь раз – до 800 Вт.

Если турбина характеризуется небольшими размерами, для получения высокой мощности будет необходим очень сильный ветер. Если же турбина большая, она способна и при незначительной ветровой скорости выдавать необходимую мощность.

Конструкция ветряка полностью определяет его способности вырабатывать определенное количество электроэнергии за единицу времени в зависимости от скорости ветрового потока.

Читайте так же:
Тепловое реле для больших токов

Конструкция ветряных генераторов энергии

Многим интересно, как устроен ветрогенератор именно с точки зрения его конструкции, поэтому мы уделим отдельное внимание этому вопросу. Такие установки включают следующие функциональные узлы:

  • установка, превращающая ветровую силу в энергию;
  • аккумуляторная батарея;
  • инвертор;
  • контроллер заряда.

Оборудование, преобразующее ветровую энергию в электрическую, включает в себя:

  • турбину, т.е. ротор, осуществляющий превращение энергии ветрового потока прямолинейного движения;
  • генератор, осуществляющий преобразование механической энергии в электрическую;
  • мачту (данный конструктивный элемент может быть типа «ферма» либо трубчатым);
  • систему управления турбиной;
  • мультипликатор (в зависимости от модели);
  • хвост или систему азимутального привода;
  • выпрямитель, который необходим при использовании генераторов переменного тока для правильной зарядки аккумулятора.

С точки зрения мощности все ветровое генераторное оборудование классифицируется на бытовое, характеризующееся мощностью 1-10 кВт и промышленное – от 500 кВт.

Модификации ветряного генераторного оборудования

Принцип работы ветроэлектростанции позволил создавать бытовое оборудование, отличающееся расположением оси турбины. В модификациях с горизонтальным расположением есть различия в системах, управляющих роторами. При азимутальном приводе фиксация направления ветра осуществляется электроникой. В зависимости от полученных данных происходит разворот от ветра в случае, если его скорость выше номинальной.

Если система управления аэромеханическая, на лопастях генераторов есть специальные подвижные элементы. Именно это конструкционное решение позволяет менять расположение плоскости лопастей в зависимости от направления ветра. Таким образом достигается наиболее эффективное функционирование оборудования.

Ветровые генераторы, характеризующиеся вертикальным расположением оси, представляют собой низкоэффективные установки, которые не рекомендуется использовать вследствие этого. К такому неэффективному оборудованию относятся:

  • «Дарье» («Darrieus») – ротор, который пригоден для использования лишь в качестве анемоскопа.
  • «Савониуса» («Savonius») – ротор, недостатком которого является существующий коэффициент опережения. Это оборудование самостоятельно запуститься не способно, его необходимо раскручивать. Если этого не сделать, получать электроэнергию станет возможным только после достижения ветром скорости 10 м/с.

Наибольшее распространение в наши дни получили ветряные крыльчатые генераторы с горизонтально расположенной осью вращения. Это обусловлено тем, что в таких установках несложно достичь 30% коэффициента использования энергии ветрового потока. Данная величина может быть при определенных условиях и выше. При вертикальной оси вращения данный коэффициент в лучшем случае достигает 20%. Следовательно, энергия ветра используется неэффективно.

Если сравнивать электроснабжение от ветрогенератора и солнечных модулей, то по схеме подключения для определенного строительного объекта они являются идентичными. Поэтому в одной такой системе энергоснабжения могут быть и те, и другие генераторы. Это позволит получить максимальное количество электроэнергии от альтернативных источников.

Читайте так же:
Тепловое действие тока краткое описание

Особенности использования ветряного генератора

Следует учитывать, что каждые 10 метров подъема позволяют получить скорость ветра на 1 м/с больше. Соответственно, от высоты мачты непосредственно зависит, насколько эффективно сможет функционировать генераторное оборудование. Также на эффективность работы будет оказывать влияние и диаметр ротора, поэтому предпочтительнее, чтобы он был большим.

Скорость ветрового потока имеет значение для работы оборудования. При скорости 1,5 м/с лопасти начинают вращаться. Генерация энергии начинается, когда скорость ветра достигает значения 3 м/с. Для украинских ветряных генераторных установок номинальной является скорость ветра 7-9 м/с. Такое оборудование способно функционировать при скорости потока воздуха до 52 м/с, что составляет около 200 км/ч.

Ветряные генераторы характеризуются обширной сферой применения. Их устанавливают в частных домовладениях, предприятиях, обособленных сооружениях и других объектах, нуждающихся в автономном энергоснабжении. Для установки предпочтительнее выбирать открытые пространства. Это могут быть возвышенности, холмы и даже мелководье.

Ветряное генераторное оборудование может быть использовано в единичном экземпляре либо группой. Для масштабных объектов такие устройства объединяют в парки. Использование возможно в качестве основного или дополнительного источника энергии.

Тепловое действие тока что это кратко

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику переноса вещества не происходит, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов. Идея таких опытов и первые качественные результаты (1913 г.) принадлежат русским физикам Л. И. Мандельштаму и Н. Д. Папалекси. В 1916 году американский физик Р. Толмен и шотландский физик Б. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением электронов.

Схема опыта Толмена и Стюарта показана на рис. 1.12.1. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г . Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.

При торможении вращающейся катушки на каждый носитель заряда действует тормозящая сила которая играет роль сторонней силы, то есть силы неэлектрического происхождения. Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью поля сторонних сил:

Следовательно, в цепи при торможении катушки возникает электродвижущая сила , равная

где – длина проволоки катушки. За время торможения катушки по цепи протечет заряд , равный

Читайте так же:
Настройка тепловых расцепителей автоматических выключателей

Здесь – мгновенное значение силы тока в катушке, – полное сопротивление цепи, υ – начальная линейная скорость проволоки.

Все величины, входящие в правую часть этого соотношения, можно измерить. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны.

По современным данным модуль заряда электрона ( элементарный заряд ) равен

а его удельный заряд есть

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема.

Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории . Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла (рис. 1.12.2).

Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер . Высота этого барьера называется работой выхода . При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера.

Из-за взаимодействия с кристаллической решеткой потенциальная энергия выхода электрона внутри проводника оказывается меньше, чем при удалении электрона из проводника. Электроны в проводнике находятся в своеобразной «потенциальной яме», глубина которой и называется потенциальным барьером.

Как ионы, образующие решетку, так и электроны участвуют в тепловом движении. Ионы совершают тепловые колебания вблизи положений равновесия – узлов кристаллической решетки. Свободные электроны движутся хаотично и при своем движении сталкиваются с ионами решетки. В результате таких столкновений устанавливается термодинамическое равновесие между электронным газом и решеткой. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость теплового движения электронов по формулам молекулярно-кинетической теории. При комнатной температуре она оказывается примерно равной 10 5 м/с.

При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Среднюю скорость дрейфа можно оценить из следующих соображений. За интервал времени Δ через поперечное сечение проводника пройдут все электроны, находившиеся в объеме

Читайте так же:
Тепловой химический источник тока патент

Концентрация атомов в металлах находится в пределах 10 28 –10 29 м –3 .

Оценка по этой формуле для металлического проводника сечением 1 мм 2 , по которому течет ток 10 А, дает для средней скорости упорядоченного движения электронов значение в пределах 0,6–6 мм/c. Таким образом, средняя скорость упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости их теплового движения Рис. 1.12.3 дает представление о характере движения свободного электрона в кристаллической решетке.

Малая скорость дрейфа на противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью . Через время порядка ( – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а их взаимодействие с положительными ионами сводят только к соударениям. Предполагается также, что при каждом соударении электрон передает решетке всю накопленную в электрическом поле энергию и поэтому после соударения он начинает движение с нулевой дрейфовой скоростью.

Несмотря на то, что все эти допущения являются весьма приближенными, классическая электронная теория качественно объясняет законы электрического тока в металлических проводниках.

Закон Ома . В промежутке между соударениями на электрон действует сила, равная по модулю , в результате чего он приобретает ускорение Поэтому к концу свободного пробега дрейфовая скорость электрона равна

где τ – время свободного пробега, которое для упрощения расчетов предполагается одинаковым для всех электронов. Среднее значение скорости дрейфа равно половине максимального значения:

Закон Джоуля–Ленца. К концу свободного пробега электроны под действием поля приобретают кинетическую энергию

Согласно сделанным предположениям вся эта энергия при соударениях передается решетке и переходит в тепло.

Это соотношение выражает закон Джоуля–Ленца.

Таким образом, классическая электронная теория объясняет существование электрического сопротивления металлов, законы Ома и Джоуля–Ленца. Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом.

Эта теория не может, например, объяснить, почему молярная теплоемкость металлов, также как и молярная теплоемкость диэлектрических кристаллов, равна 3, где – универсальная газовая постоянная (закон Дюлонга и Пти, см. ч. I, § 3.10). Наличие свободных электронов на сказывается на величине теплоемкости металлов.

Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов. Теория дает соотношение в то время как из эксперимента получается зависимость ρ

Читайте так же:
Количество теплоты через мощность тока

. Однако наиболее ярким примером расхождения теории и опытов является сверхпроводимость .

Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Однако наибольший интерес представляет удивительное явление сверхпроводимости , открытое датским физиком Х. Каммерлинг-Оннесом в 1911 году. При некоторой определенной температуре кр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля (рис. 1.12.4). Критическая температура у ртути равна 4,1 К, у аллюминия 1,2 К, у олова 3,7 К. Сверхпроводимость наблюдается не только у элементов, но и у многих химических соединений и сплавов. Например, соединение ниобия с оловом (Ni3Sn) имеет критическую температуру 18 К. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах.

Вещества в сверхпроводящем состоянии обладают исключительными свойствами. Практически наиболее важным их них является способность длительное время (многие годы) поддерживать без затухания электрический ток, возбужденный в сверхпроводящей цепи.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений.

Научный интерес к сверхпроводимости возрастал по мере открытия новых материалов с более высокими критическими температурами. Значительный шаг в этом направлении был сделан в 1986 году, когда было обнаружено, что у одного сложного керамического соединения кр = 35 K. Уже в следующем 1987 году физики сумели создать новую керамику с критической температурой 98 К, превышающей температуру жидкого азота (77 К). Явление перехода веществ в сверхпроводящее состояние при температурах, превышающих температуру кипения жидкого азота, было названо высокотемпературной сверхпроводимостью . В 1988 году было создано керамическое соединение на основе элементов с критической температурой 125 К.

В настоящее время ведутся интенсивные работы по поиску новых веществ с еще более высокими значениями кр. Ученые надеятся получить вещество в сверхпроводящем состоянии при комнатной температуре. Если это произойдет, это будет настоящей революцией в науке, технике и вообще в жизни людей.

Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.

голоса
Рейтинг статьи
Ссылка на основную публикацию