Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловое действие тока механизм применение

Тепловое действие тока механизм применение

Тема урока: Тепловое действие электрического тока. Закон Джоуля—Ленца

объяснить причину нагревания проводников электрическим током на основе положений классической электронной теории;

экспериментально получить зависимость количества теплоты, выделяемого проводником, от параметров цепи;

применить закон сохранения и превращения энергии для процессов, происходящих в цепи при прохождении электрического тока;

познакомить с математической записью закона Джоуля – Ленца.

Формировать умения видеть проблему, формулировать гипотезу, делать обобщения и выводы;

Развивать научное мышление через использование полученных теоретических знаний для объяснения физических явлений;

Формировать познавательный интерес к физике через использование информационных технологий и постановку эксперимента;

Развивать речь учащихся через использование научной терминологии.

воспитание самостоятельности, активности, любознательности;

формирование коммуникативных навыков;

воспитание самодисциплины, ответственности за результат своего труда.

Демонстрационное: компьютер, медиапроектор.

Лабораторное: источники тока, реостат, соединительные провода, ключи, лампочки, амперметр.

Организационный момент, приветствие.

Постановка проблемы – заморочка.

Сообщение темы урока – запись в тетрадь.

Деление класса на группы.

Постановка проблемы исследований.

Работа в группах: планирование эксперимента, выполнение эксперимента, формулировка вывода.

Представление исследований, обобщение результатов.

Знакомство с математической записью закона Джоуля – Ленца.

Домашнее задание. Решение заморочки.

Закрепление закона Джоуля – Ленца при решении качественных задач.

Подведение итога урока.

Оценивание работы учащихся.

На экране – эпиграф урока. Слайд 1.

Здравствуйте, ребята! Начинаем наш урок. Надеюсь, что минуты общения будут приятными и плодотворными. Будьте смелее и активнее, не бойтесь высказывать своё мнение. Успеха нам!

Сначала я хочу заморочить вам голову задачей. Слушайте и думайте! Слайд 2 . Читаю задачу.

Кто готов рассуждать? Затрудняетесь? Тогда найдем решение вместе.

На прошлых уроках мы говорили о работе тока. Вспомним, каков же механизм совершения электрическим током работы в проводнике. Для помощи – картинка из учебника, знакомая вам.

Слайд 2. Механизм работы тока в проводнике.

Таким образом, описав механизм совершения работы Слайд 4 , мы сделали вывод о переходе работы тока в теплоту на основании фундаментального законы природы – закона сохранения и превращения энергии. И переходим к непосредственному изучению темы урока:

Слайд 5: Нагревание проводников электрическим током. Закон Джоуля – Ленца. Запишите тему урока в тетради.

Слайд 6. Задачи урока:

Объяснить причину нагревания проводников электрическим током;

Экспериментально обнаружить зависимость выделяемой теплоты от параметров электрической цепи;

Сделать вывод из экспериментальной и теоретической работы;

Сформулировать закон Джоуля—Ленца;

Рассмотреть практическое применение теплового действия тока.

Для дальнейшей работы нам нужно поделиться на три группы: две группы экспериментаторов и группа теоретиков. Деление на группы. Обращаемся к теме урока и формулируем проблему: Что же нам интересно узнать по теме урока? Слайд 7. Наша задача: исследовать зависимость количества выделяемой теплоты от параметров цепи.

От чего может зависеть выделяемая теплота в электрической цепи? Я готова выслушать ваши предположения, ребята. Выдвигайте гипотезы. Чтобы не быть оторванными от жизни, сначала приведем примеры: где в быту мы встречаетесь с нагреванием проводников? Вернемся к вопросу: от каких параметров может зависеть теплота? А видна ли эта зависимость теоретически? Да, Q=A, A=IUt

Обсудим идею опыта. Как вы понимаете, что количество теплоты зависит от силы тока в цепи? От сопротивления цепи? Какие будут ваши предложения по оценке количества теплоты? По каким признакам можем судить, где теплоты выделяется больше, а где меньше? На ощупь(?!), термометром(?), по накалу ламп. Группы экспериментаторов могут приступать к выполнению своих исследований. Не забывайте о соблюдении техники безопасности!

Группа теоретиков будет на примере решения задач получать зависимость выделяемой теплоты от силы тока в цепи и сопротивления. Слайд 8.

Учащиеся выполнили работу, говорят выводы. Записать вывод закона Джоуля – Ленца в тетрадь. Слайд 9. Формулирую закон.

Один из авторов закона – русский физик Эмилий Христианович Ленц. Слайд 10.

Таким образом, мы изучили одно из важных проявлений электрического тока. И теперь вы сможете рассудить заморочку.

Слайд 11. Подошло время записать домашнее задание и ответить на вопрос-заморочку.

Напомню её. Слайд 12.

Рассуждения учащихся, ответ на вопрос-заморочку.

Нагревание проводников электрическим током – явление, которое нужно учитывать в жизни. Как вы думаете, почему? А что будет, если проводка в доме сильно нагреется? Слайд 13.

Читайте так же:
Расчет тепловыделения от тока

Короткое замыкание. Слайд 14.

Практическое применение теплового действия тока. Слайд 15. Нагревание проводников электрическим током – явление, которое широко применяется в жизни. Выводы учащихся.

Подходит к концу урок, мы должны подвести итог работе.

Слайд16. Что мы узнали? Чему мы научились? Кто работал лучше всех? Кто работал хорошо? (Увидеть положительное в каждом ребенке)

Осталось немного времени, чтобы мы посоревновались в решении интересных качественных задач. Читайте, думайте и объясняйте! Слайд 17.

Тепловое действие тока, плотность тока и их влияние на нагрев проводников

Под тепловым действием электрического тока понимают выделение тепловой энергии в процессе прохождения тока по проводнику. Когда через проводник проходит ток, образующие ток свободные электроны сталкиваются с ионами и атомами проводника, нагревая его.

Выделяемое при этом количество теплоты можно определить с помощью закона Джоуля-Ленца, который формулируется так: количество теплоты, выделяемое при прохождении электрического тока через проводник, равно произведению квадрата тока, сопротивления данного проводника и времени прохождения тока через проводник.


Приняв ток в амперах, сопротивление в омах, а время в секундах, получим количество теплоты в джоулях. А учитывая, что произведение тока на сопротивление — есть напряжение, а произведение напряжения на ток — мощность, в результате оказывается, что количество выделенной теплоты в данном случае равно количеству электрической энергии, переданной данному проводнику во время прохождения по нему тока. То есть электрическая энергия преобразуется в тепловую.Получение тепловой энергии из электрической широко применяется с давних времен в различной технике. Электронагревательные приборы, такие как обогреватели, водонагреватели, электрические плиты, паяльники, электропечи и т. д., а также электросварка, лампы накаливания и многое другое используют именно этот принцип для получения тепла.


Но в большом количестве электрических устройств нагрев, вызываемый током, вреден: электродвигатели, трансформаторы, провода, электромагниты и т. д. — в данных устройствах, не предназначенных для получения тепла, нагрев снижает их КПД, мешает эффективной работе, и даже может привести к аварийным ситуациям.Для любого проводника, в зависимости от параметров окружающей среды, характерно определенное допустимое значение величины тока, при котором проводник заметно не нагревается.

Так, например, для нахождения допустимой токовой нагрузки на провода, используют параметр «плотность тока», характеризующий ток, приходящийся на 1 кв.мм площади поперечного сечения данного проводника.

Допустимая плотность тока для каждого проводящего материала в определенных условиях своя, она зависит от многих факторов: от вида изоляции, интенсивности охлаждения, температуры окружающей среды, площади поперечного сечения и т. д.


К примеру, для электрических машин, где обмотки изготавливают, как правило, из меди, величина предельно допустимой плотности тока не должна превышать 3-6 ампер на кв.мм. Для лампы накаливания, а точнее для ее вольфрамовой нити, — не более 15 ампер на кв.мм.

Для проводов осветительных и силовых сетей предельно допустимая плотность тока принимается исходя из вида их изоляции и площади поперечного сечения.

Если материалом проводника служит медь, а изоляция резиновая, то при площади сечения, например, в 4 кв.мм допускается плотность тока не более 10,2 ампер на кв.мм, а если сечение 50 кв.мм, то допустимая плотность тока будет всего 4,3 ампера на кв.мм. Если же проводники указанной площади не имеют изоляции, то допустимые плотности тока будут соответственно 12,5 и 5,6 ампер на кв.мм.

С чем же связано понижение допустимой плотности тока для проводников большего сечения? Дело в том, что проводники с существенной площадью поперечного сечения, в отличие от проводников малого сечения, имеют больший объем проводящего материала расположенного внутри, и получается что внутренние слои проводника сами окружены нагревающимися слоями, которые мешают отводу тепла изнутри.

Чем больше площадь поверхности проводника по отношению к его объему, — тем большую плотность тока способен выдержать проводник не перегреваясь. Неизолированные проводники допускают нагрев до более высокой температуры, так как от них тепло отводится прямо в окружающую среду, изоляция этому не препятствует, и охлаждение происходит быстрее, поэтому для них допускается более высокая плотность тока чем для проводников в изоляции.

Если превысить допустимый для проводника ток, он начнет перегреваться, и в какой-то момент его температура окажется чрезмерной. Изоляция обмотки электродвигателя, генератора или просто проводки, может в таких условиях обуглиться или загореться, что приведет к короткому замыканию и пожару. Если же говорить о неизолированном проводе, то он при высокой температуре может просто расплавиться и разорвать цепь, в которой служит проводником.

Читайте так же:
Тепловое действие электрического тока используется в генераторах трансформаторах


Превышение допустимого тока принято предотвращать. Поэтому в электрических установках обычно принимают специальные меры с целью автоматического отключения от источника питания той части цепи или того электроприемника, в котором случилась перегрузка по току или короткое замыкание. Для этого служат автоматические выключатели, плавкие предохранители и другие устройства, несущие аналогичную функцию — разорвать цепь при перегрузке.

Из закона Джоуля-Ленца следует, что перегрев проводника может произойти не только из-за превышения тока через его поперечное сечение, но и из-за более высокого сопротивления проводника. По этой причине для полноценной и надежной работы любой электрической установки крайне важно сопротивление, особенно в местах соединения друг с другом отдельных проводников.


Если проводники соединены не плотно, если их контакт друг с другом не качественный, то сопротивление в месте соединения (так называемое переходное сопротивление в месте контакта) окажется выше чем для цельного участка проводника той же длины.В результате прохождения тока через такое некачественное, не достаточно плотное соединение, место данного соединения будет перегреваться, что чревато возгоранием, выгоранием проводников или даже пожаром.

Чтобы этого избежать, концы соединяемых проводников надежно зачищают, обслуживают и оснащают кабельными наконечниками (впаивают или прессуют) или гильзами, которые обеспечивают запас на переходное сопротивление в месте контакта. Такие наконечники можно плотно закрепить на клеммах электрической машины при помощи болтов.

К электрическим аппаратам, предназначенным для включения и выключения тока, также применяют меры по уменьшению переходного сопротивления между контактами.

Тепловое действие тока

Электроток, проходящий по проводниковому элементу, за счет ударения свободных электронов об ионы и атомы нагревает его. Тепловое действие тока можно наблюдать во всех аспектах жизни человека: от работающих ламп накаливания и бытовых приборов до получения цветных металлов и добычи азота.

Самодельный нагревательный прибор с нихромовой спиралью, что нагревается под воздействием электротока

Закон Джоуля-Ленца

Тепловое действие электрического тока – это не что иное, как переход электроэнергии в теплоту. Такой процесс отражается в законе Джоуля-Ленца, какой определяет количественную меру выделенной теплоэнергии.

Согласно этому закону, количественная мера тепла, какое излучается при прохождении электротока, пропорционально квадрату силы этого электротока, сопротивлению проводникового элемента и времени, за которое он протекает через проводник.

Формула, отражающая тепловое действие электротока (закон Джоуля-Ленца):

  • Q – количество теплоты;
  • I – сила электротока;
  • R – электросопротивление проводникового элемента;
  • t – время прохождения электротока.

Из формулы видно, что чем больше или сила электротока, или сопротивление проводника, тем больше теплоты будет выделяться. По этой причине нагревательные элементы в оборудовании и приборах изготавливаются из металлов, имеющих высокое электросопротивление.

Измеряется количество теплоты, выделенное электротоком, в джоулях – сокращенно «Дж».

Демонстрация закона Джоуля-Ленца

Количество тепла, что выделяется при прохождении электротока силой в 1 А через проводниковое сопротивление в 1 Ом за 1 секунду, называется термическим эквивалентом и равно 0,24 малой калории.

Для справки. Малая калория – это количество тепла, которое потребуется 1 г воды, чтобы поднять свою температуру на 1 оС.

Степень проявления теплового действия электротока в проводнике можно наблюдать на специальном приборе, где на зависящее от силы тока расстояние посредством воздуха, нагреваемого проволокой, перемещается ртуть.

Применение теплового действия электротока

Нагревание проводниковой спирали под воздействием электротока, что приводит к свечению ламп накаливания

Применения тепловых свойств электротока очень разнообразны. Наиболее употребительные из них нижеследующие:

  1. Электрическое освещение, представленное:
  • лампами накаливания, в которых металлическая нить, помещенная в стеклянный баллон с выкаченным из него воздухом, накаливается током до состояния свечения (вместо воздуха лампа может быть наполнена инертным газом, например, азотом);
  • дуговыми фонарями, в которых электрический ток, проходящий через сомкнутые угли (угольные стержни), в момент небольшого их разведения образует искру, и между углями устанавливается вольтова дуга, приводящая в состояние сильного свечения концы углей.
  1. Электронагревательные приборы в виде сосудов и плит для изготовления пищи, утюгов или отопительных приборов, где теплота выделяется в проволоках или тонко раскатанном на слюдяных пластинках металле большого сопротивления;
  2. Сварка или паяние могут осуществляться посредством электрической дуги, какая образуется между подлежащей обработки частью и железным либо угольным стержнем. Возможно формирование вольтовой дуги и между двумя угольными электродами и дальнейшее направление дуги к месту спая путем оттягивания ее с помощью электромагнита;
  3. Применение тепловых свойств электротока в специальных печах для получения определенных веществ, например:
  • получение алюминия производится также с помощью теплового действия свойств электротока, для чего глинозем, содержащий алюминий, закладывается в угольную электропечь, в которой мощная вольтова дуга, образующаяся между ней и углем, расплавляет глинозем, после чего получившаяся жидкая масса подвергается электролизу, причем чистый алюминий выделяется на отрицательном полюсе;
  • получение стали может также осуществляться посредством электропечей с вольтовой дугой, в каких конечный продукт (сталь) получается путем выплавки из чугуна и сборных отбросов из металла теплом, выделяющимся между двумя угольными электродами либо между одним электродом из угля и вторым в виде самой расплавленной массы;
  • фабрикация карбидов производится также с помощью электрических печей;
  • добыча азота из воздуха производится также в электропечах, в которых вольтова дуга переменного тока высокого напряжения оттягивается магнитом к диску либо направляется в высокую трубку, а воздух, прогоняемый через эту дугу, благодаря высокой температуре, образует окись азота, которая перерабатывается в азотную кислоту, а затем в калийную селитру.
  1. Получение озона из воздуха производится путем электрических разрядов источника высокого напряжения, благодаря которым происходят окислительные процессы в воздухе, находящимся между электродами, и выделение озона. Озон широко применяется для отделки тканей, для освежения испорченного воздуха (озонирование) и главным образом для обезвреживания питьевой воды.
Читайте так же:
Тепловая нагрузка автоматических выключателей

Внешний вид электрической печи для производства стали

Тепловое действие тока имеет высокое значение для человека, так как представлено во многих аспектах его жизнедеятельности, в том числе в производственных цепочках многих перерабатывающих, добывающих предприятий.

Видео

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов.

2. Тепловое действие электрического тока. Закон Джоуля-Ленца.

3. Использование теплового действия электрического тока в устройстве теплиц.

4. Использование теплового действия электрического тока в устройстве инкубаторов.

Современный мир уже немыслимо представить без электричества. Электрический ток используется человеком повсеместно. Бытовые электроприборы прочно заняли свое место в жилище человека, в промышленности, на транспорте и различных учреждениях тоже нельзя обойтись без использования электричества.

Однако сельские жители, особенно пожилого возраста по-прежнему продолжают относиться осторожно к использованию электрического тока.

Цель доклада: Показать, как можно использовать электрический ток для нужд сельского хозяйства.

Подобрать литературу по теме доклада

Анализ и обобщение источников литературы

Выступление с докладом перед аудиторией.

Тепловое действие электрического тока. Закон Джоуля-Ленца.

При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается.
Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Джоуля — Ленца. Его формулируют следующим образом. Количество выделенного тепла Q равно произведению квадрата силы тока I2, сопротивления проводника R и времени t прохождения тока через проводник:

Количество тепла, выделяющегося в проводе, пропорционально объему провода и приращению температуры, а скорость отдачи тепла в окружающее пространство пропорциональна разности температур провода и окружающей среды.

В первое время после включения цепи разность температур провода и окружающей среды мала. Только небольшая часть тепла, выделяемого током, рассеивается в окружающую среду, а большая часть тепла остается в проводе и идет на его нагревание. Этим объясняется быстрый рост температуры провода в начальной стадии нагрева.

По мере увеличения температуры провода растет разность температур провода и окружающей среды, увеличивается количество тепла, отдаваемое проводом. В связи с этим рост температуры провода все более замедляется. Наконец, при некоторой температуре устанавливается тепловое равновесие: за одинаковое время количество теплоты выделяющегося в проводе становится равным количеству теплоты выделяющемуся во внешнюю среду.

При дальнейшем прохождении неизменяющегося тока температура провода не изменяется и называется установившейся температурой.

Превращение электрической энергии в тепловую нашло широкое применение в технике и быту. Оно происходит, например, в различных производственных и бытовых электронагревательных приборах (электрических печах, электроплитах, электрических паяльниках и пр.), в электрических лампах накаливания, аппаратах для электрической сварки и пр.

Читайте так же:
Где устанавливают выключатель теплого пола

Рассмотрим способы применения теплового действия электрического тока в устройстве теплиц и инкубаторов.

Использование теплового действия электрического тока в устройстве теплиц.

Теплица — тип садового парника, отличающийся размерами.

Представляет собой защитное сооружение. Применяется для выращивания ранней рассады (капусты, томатов, огурцов, цветов сеянцев, укоренения черенков или доращивания горшечных растений), для последующего высаживания в открытый грунт. В отличие от парника, теплица из-за своих размеров, позволяет организовать весь цикл выращивания той или иной культуры в закрытом грунте.

Размеры теплиц варьируются от 2 м до 6 м в длину и от 2 м до 3 м в ширину. Оптимальными размерами теплицы рекомендуются 2,5 х 2 м. Если в теплице планируют устроить полки вдоль обеих сторон, выбирают размер 3 х 2,5 м.

В зависимости от вида овощей оптимальная температура в теплице должна составлять днем 16-25°С, а ночью на 4-8°С меньше, чем днем. Высокая температура по ночам и в пасмурные дни провоцирует слишком быстрый рост зеленой массы растения, что приводит к снижению урожайности и качества плодов.

Недорогим и эффективным способом обогрева теплиц и парников следует считать электрический.

Наиболее простыми в использовании являются переносные тепловентиляторы (обогреватели). Некоторые типы электрических нагревателей для теплиц могут работать в режиме циркуляции: нагнетать воздух, не грея его. Эта функция полезна для улучшения микроклимата теплицы в жаркую погоду. Тепловентиляторы рекомендуется устанавливать под стеллажами с высаженными растениями.

Вторым из существующих способов обогрева теплиц, — кабельный обогрев грунта теплиц. Для обогрева грунта теплиц используется кабель с изоляцией из полипропилена, бронёй в виде оплётки из стальных оцинкованных проволок и оболочкой из изолирующего материала, диаметр наружный 6 мм, радиус изгиба 35 мм.

Для обеспечения оптимальной температуры почвы требуется мощность 75-100 Вт/м2. Мощность нагревательного кабеля или ленты не должна превышать 20 Вт/м. Для регулирования температуры нужно использовать терморегуляторы, так как оптимальная температура почвы для растений меняется от 15 до 250С, а для торфяных горшочков и грядок с рассадой — 300С.

Третьим способом обогрева с помощью теплового действия электрического тока можно считать применение в теплицах инфракрасных потолочных обогревателей. Небольшого размера, они не занимают полезную площадь (стены, пол теплицы), потому что крепятся на потолке. Применение инфракрасных обогревателей позволяет создавать в теплице разные температурные зоны. Это удобно, в том случае, если в теплице находятся растения привыкшие к разным температурным условиям (растения из разных климатических поясов).При помощи особого принципа обогрева, потолочные ИК обогреватели прогревают сначала землю (почву), а уже потом окружающий воздух. По сути, такой принцип обогрева является подобием естественного процесса «обогрева» нашей планеты солнцем. Инфракрасные обогреватели излучают инфракрасное тепло, прогревающее поверхность грунта, а уже после прогрева грунта тепло передается окружающему воздуху. Если ты скачал этот доклад и даже его не прочитал, то получишь два. С помощью термостата инфракрасный обогреватель отключается, когда воздух нагревается в теплице до заданной температуры. Таким образом, поддерживается постоянная температура. Помимо этого, происходит дополнительная экономия энергии.

Для теплиц подойдет и водяное отопление, работающее от электричества. Водяное отопление, пожалуй, наиболее выгодно для обогрева теплиц. В бойлере нагревается вода, а затем циркуляционным насосом перекачивается в пластиковые трубы. Трубы водяного отопления можно проложить между растениями или вдоль внешних стенок теплицы.

Использование теплового действия электрического тока в устройстве инкубаторов.

Инкуба́тор (от латинского incubo, — высиживаю птенцов) — аппарат для искусственного вывода молодняка сельскохозяйственной птицы из яиц.

Простейшие инкубаторы обычно представляют собой специальные помещения, утеплённые бочки, печи и др. — ещё с древних времён были распространены в южных странах. Более 3000 лет назад в Египте уже строили инкубаторы для цыплят. Чтобы обогреть инкубатор, сжигали солому и, не имея измерительных приборов, поддерживали нужный режим на глаз. Инкубаторы использовавшиеся в СССР в 1970-е годы были «кабинетные» и «шкафные», последние были более известны. Эти инкубаторы — сложные устройства, где поддержание необходимой температуры и влажности воздуха, воздухообмен и поворачивание яиц, то есть весь процесс инкубации, происходит автоматически. Обогрев в каждом шкафу осуществляется четырьмя электронагревателями по 0,5 кВт каждый, включенными попарно в две ступени мощности. Управление включением и выключением нагревателей производят реле температуры мембранного типа, действующие независимо на каждую пару нагревателей. Реле замыкают свои контакты, когда температура в шкафу становится ниже соответственно 37,7 и 37,4 °С. При этом срабатывают промежуточные реле, включая одну, а затем и другую ступени нагрева. Отключаются нагреватели в обратном порядке. Включение всех четырех нагревателей обычно становится необходимым лишь при форсировании разогрева, например после закладки яиц. Чтобы поддерживать необходимую температуру, в обычных условиях достаточно двух нагревателей.

Читайте так же:
Конспект количество теплоты выделяемое проводником с током

Для предохранения шкафа от перегрева установлено третье температурное реле, которое настраивается на температуру 37,9 °С. Если температура в шкафу превышает это значение, регулятор температуры размыкает цепь питания реле, которое одним контактом отключает цепи питания реле, а другим — включает питание соленоида охлаждения. Соленоид открывает заслонки вентиляционных окон, и свежий воздух засасывается вентилятором в шкаф.

С помощью вентиляторов поддерживается надлежащий температурный режим, выравнивается температура по всему объему шкафа, подается свежий воздух к лоткам с яйцами. Вентилятор работает непрерывно, если дверь шкафа закрыта. При открывании двери блокировочный выключатель размыкает свои контакты, обесточивая промежуточное реле, которое своими контактами отключает электродвигатель вентилятора. Этим предотвращается возможность переохлаждения яиц наружным воздухом.

Управление системой увлажнения осуществляется реле увлажнения, представляющим собой упруго натянутую вискозную ленту, которая имеет свойство заметно изменять свои размеры в зависимости от влажности воздуха. С понижением влажности лента укорачивается и, нажимая через упор на микро-выключатель, подает питание в соленоид увлажнения, который открывает кран подачи воды внутрь шкафа. Вода поступает каплями в сеточный испаритель на валу вентилятора и разносится им по всему шкафу.

Для домашнего разведения птенцов можно сделать самодельный инкубатор, используя тепловое действие электрического тока. В этом случае электрическая схема инкубатора будет состоять из терморегулятора, электронного термометра, таймера поворотного механизма и блока питания. Блок управления находящийся вне инкубатора, соединяется с ним гибким кабелем. Внутри инкубатора находятся:

вентилятор для принудительного циркулирования нагретого воздуха,

двигатель поворотного механизма с редуктором для наклона лотков с яйцами,

датчики температуры терморегулятора и термометра.

Для нагревания воздуха в инкубаторе оптимально использовать два сопротивления мощностью 25 Вт, для перемешивания воздуха нужно использовать вентилятор. Для наблюдения за процессом выведения цыплят устанавливается лампа подсветки мощностью 10. 20 Вт.

Правильное расположение нагревательных элементов в инкубаторе крайне важно для увеличения процента вывода цыплят. В разных конструкциях инкубаторов нагреватели располагают над лотками, под лотками или сбоку по периметру инкубатора. Однако наиболее равномерное распределение температуры по площади лотка получается при подогреве сверху. В этом случае максимальна и теплоотдача, поскольку теплый воздух не успевает перемешаться с поступающим через вентиляционные отверстия холодным воздухом. Расстояние от нагревательных элементов до яиц зависит от типа нагревателей. Если в качестве нагревателей использовать электрические лампы накаливания, которые являются точечным источником тепла, минимальное расстояние от ламп до лотка должно быть не менее 25 см. Если же нагревателем является спираль из нихромовой проволоки, залитая гипсом, то такой нагреватель можно расположить на расстоянии 10 см от лотка.

Для инкубатора на 50 яиц суммарная мощность нагревателя должна составлять 80 Ватт. При этом лампочки накаливания желательно выбирать наименьшей мощности, тогда инкубатор будет обогреваться более равномерно. Например, для инкубатора на 50 яиц предпочтительнее использовать 3 лампочки по 25 Вт, чем две — по 40 Вт. Для повышения надежности ламп их можно соединить последовательно. Тогда напряжение на каждой из ламп будет в 2 раза ниже сетевого, соответственно, и мощность ламп окажется в два раза ниже их паспортной мощности. Поэтому при параллельно — последовательном соединении количество ламп удваивается.

Электрические лампы накаливания являются хорошим нагревательным элементом для домашнего инкубатора, поскольку не только позволяют точно поддерживать температуру, но и являются электробезопасными обогревателями.

Электрический ток, проходя по проводам, совершает различные действия. Наиболее используемым действием электрического тока является тепловое.

Тепловое действие широко используется человеком, в том числе его можно использовать для нужд сельского хозяйства при выращивании растений, овощей и для промышленного и домашнего разведения птенцов в инкубаторах

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector