Устройство стабилизатора напряжения переменного тока
Стабилизаторы напряжения переменного тока 668
- 20
- 40
- 60
Стабилизаторы напряжения переменного тока — это устройства, автоматически преобразующие текущее повышенное или пониженное напряжение в стабильное напряжение 220В (или 380В).
Стабилизаторы напряжения применяются для защиты электрооборудования от повышения и понижения напряжения в электросети, скачков и перепадов напряжения, электромагнитных помех, короткого замыкания, тем самым позволяя увеличить срок эксплуатации оборудования.
Мы предлагаем стабилизаторы напряжения переменного тока двух типов: со ступенчатым регулированием напряжения (или релейные) и электромеханические (или сервомоторные).
Релейные стабилизаторы отличаются относительно небольшой ценой, быстротой регулирования, высокой помехоустойчивостью, особенно к импульсным перенапряжениям, малым весом и габаритами. Они применяются при длительных интервалах пониженного или повышенного напряжений, но не рекомендованы к использованию для защиты электрооборудования с электродвигателями переменного тока и устройств с большими пусковыми токами. Недостатком релейных стабилизаторов является ступенчатое регулирование напряжения на выходе, ограничивающее точность стабилизации.
Электромеханические стабилизаторы подходят для защиты любой нагрузки, характеризуются высокой точностью удержания выходного напряжения, хорошей нагрузочной способностью, отсутствием помех при работе, обеспечивают плавное регулирование выходного напряжения без искажения синусоидальной формы. Недостатками электромеханических стабилизаторов являются низкое быстродействие, шумность, наличие открытого скользящего контакта.
При выборе стабилизатора напряжения следует учитывать суммарную мощность и характер нагрузки, количество фаз, особенности питающей сети. Обращайте внимание на рабочий диапазон стабилизатора, количество и качество розеток, наличие у них заземления, точность стабилизации. Мы предлагаем широкий ассортимент стабилизаторов напряжения переменного тока мощностью от 100 до 10000 Вт. Основными поставщиками являются Krauler, Штиль, Эра.
Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Алматы, Архангельск, Астрахань, Барнаул, Белгород, Владимир, Волгоград, Вологда, Воронеж, Гомель, Екатеринбург, Иваново, Ижевск, Казань, Калуга, Кемерово, Киров, Кострома, Краснодар, Красноярск, Курган, Курск, Липецк, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Орёл, Пермь, Псков, Ростов-на-Дону, Рязань, Самара, Саранск, Саратов, Смоленск, Ставрополь, Тверь, Томск, Тула, Тюмень, Уфа, Чебоксары, Челябинск, Ярославль. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Связной» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Владивосток, Махачкала, Томск, Оренбург, Новокузнецк, Астрахань, Пенза, Чебоксары, Калининград, Улан-Удэ, Сочи, Иваново, Брянск, Сургут, Нижний Тагил, Архангельск, Чита, Курган, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и еще в более чем 1000 городов и населенных пунктов по всей России.
Товары из группы «Стабилизаторы напряжения переменного тока» вы можете купить оптом и в розницу.
Стабилизатор напряжения переменного тока
При питании радиоэлектронной аппаратуры от сети нередко приходится стабилизировать напряжение переменного тока. Большую сложность при проектировании таких стабилизаторов представляет получение синусоидального выходного напряжения с малыми нелинейными искажениями.
С точки зрения практической реализации этого требования, а также повышения быстродействия и коэффициента стабилизации наиболее предпочтительны стабилизаторы с транзисторным регулирующим элементом.
Основные технические характеристики стабилизатора:
- Напряжение питающей сети, В. 220 ±22;
- Выходное напряжение переменного тока, В. 220;
- Мощность нагрузки, Вт. 130. 220;
- Нестабильность выходного напряжения при указанных изменениях напряжения сети
- и мощности нагрузки, %, не более. 0,5;
- Коэффициент нелинейных искажений, %, не более. 6.
Принципиальная схема
В описываемом стабилизаторе (рис. 9.1) регулирующий элемент составлен из транзисторов VT1 и VT2, диодов VD2, VD3 и резисторов R1. R5. При изменении значения постоянного тока, протекающего через диагональ выпрямительного моста VD1, изменяется значение переменного тока, текущего через секцию 1.1 обмотки автотрансформатора.
В результате изменяется значение переменного напряжения на секции 1.2 обмотки. Такое включение регулирующего элемента уменьшает его влияние на форму синусоиды выходного напряжения. Резисторы R1. R4, шунтирующие регулирующий элемент, уменьшают мощность, рассеиваемую транзисторами VT1, VT2.
Трансформатор Т2 служит для питания усилителя постоянного тока и одновременно входит в цепь отрицательной обратной связи. Напряжение обмотки II, выпрямленное диодным мостом VD5, поступает на делитель R12. R14.
При повышении напряжения сети или уменьшении тока нагрузки, подключенной к выходу стабилизатора, увеличивается напряжение на базе транзистора VT5, а значит, и его коллекторный ток. Примерно в той же мере уменьшается и ток коллектора транзистора VT4.
Падение напряжения же на резисторе R10 остается практически неизменным, поскольку напряжение на базе транзистора VT4 стабилизировано. При этом напряжение на коллекторе VT4 увеличивается и ток, текущий через транзистор VT3, уменьшается. Вследствие уменьшения напряжения на базе транзистора VT2 он начинает закрываться, напряжение на его коллекторе увеличивается. Это приводит к закрыванию и транзистора VT1, так как напряжение на его базе фиксировано делителем Rl, R2, R3, R4, VD2, R5. Диод VD3 исключает влияние этого делителя на базу транзистора VT2.
В результате увеличения сопротивления транзисторов VT1, VT2 регулирующего элемента, уменьшается постоянный ток в диагонали выпрямительного моста VD1 и, следовательно, переменный ток в секции 1.1 обмотки автотрансформатора Т1, что эквивалентно увеличению падения напряжения на секции 1.2. Поэтому выходное напряжение сохраняет свое первоначальное значение.
Рис. 1. Принципиальная схема стабилизатора напряжения переменного тока.
При уменьшении напряжения сети или увеличении тока нагрузки ток через транзистор VT3 увеличивается и транзисторы VT1 и VT2, наоборот, еще более открываются. Диод VD2 в этом случае закрывается напряжением с резистора R7. Диод VD3 обеспечивает полное открывание транзистора-VT1.
Транзистор VT6, резистор Rl 1 и конденсатор С2 образуют электронный фильтр, задерживающий подачу напряжения питания на усилитель постоянного тока. Задержка необходима для устранения броска выходного напряжения в момент включения стабилизатора.
Ограничение минимальной мощности нагрузки значением 130 Вт обусловлено тем, что при меньшей мощности и сетевом напряжении более 220. 225 В исходное напряжение повышается сверх установленного допуска из-за уменьшения падения напряжения на индуктивном сопротивлении секции 1.2 сетевого трансформатора.
Выпрямитель КЦ405А (VD1) можно заменить четырьмя диодами с обратным напряжением не менее 600 В и выпрямленным током 1 А; КД906А (VD5) — диодами с прямым током не менее 30 мА; транзисторы КТ809А (VT1, VT2) — аналогичными им, например, КТ812А, КТ812Б. , .
Транзисторы VT3. VT6 могут быть любыми маломощными соответствующей структуры. Резисторы R1. R4 смонтированы на отдельной плате, которая размещена под выключателем SB1. Мощность, рассеиваемая каждым из транзисторов VT1, VT2, равна 8 Вт, поэтому они установлены на отдельные теплоотводы с площадью поверхности по 500 см2. Габаритная мощность автотрансформатора Т1 — около 22 Вт. Можно использовать автотрансформатор от магнитофона «Маяк-202» (магнитопровод ШЛ20х20, секция 1.1 обмотки содержит 1364 витка провода ПЭВ-2-0,31, секция 1.2 — 193 витка провода ПЭВ-2-0,63). Трансформатор Т2 выполнен на магнитопроводе ШЛ16х16. Обмотка I содержит 2560 витков провода ПЭВ-0,1, обмотка II — 350 витков провода ПЭВ-2-0,2 с отводом от 70-го витка (для питания индикаторной лампы HL1).
Кожух стабилизатора лучше всего изготовить из изоляционного материала. В панелях кожуха надо предусмотреть вентиляционные отверстия. Если кожух металлический, необходимо позаботиться о надежной изоляции от него всех токоведущих деталей и проводов.
При налаживании сначала подборкой резистора R11 устанавливают напряжение 12 В на эмиттере транзистора VT6 (общим проводом устройства служит отрицательный вывод диодного моста VD5). При этом на базе транзистора VT4 должно установиться напряжение около 8 В. К выходу стабилизатора подключают нагрузку. Ею может служить лампа накаливания мощностью 150. 200 Вт. С лабораторного автотрансформатора на вход стабилизатора подают напряжение 220 В и резистором R13 устанавливают на выходе номинальное сетевое напряжение 220 В.
Падение напряжения на каждом из транзисторов регулирующего элемента должно быть 80. 100 В. При изменении входного напряжения на ±22 В напряжение на выходе стабилизатора должно оставаться практически неизменным.
Рис. 2. Печатная плата.
Отсутствие стабилизации свидетельствует об ошибке в монтаже или неисправности той или иной детали. Возбуждение стабилизатора устраняют подборкой конденсатора С1.
Мощность стабилизатора можно увеличить до 450 Вт, если его регулирующий элемент смонтировать по схеме, показанной на рис. 9.2. Для этого случая автотрансформатор Т1 нужно выполнить на магнитопроводе ШЛ20×25. Секция 1.1 обмотки должна содержать 1300 витков проно i i ПЭВ-2-0,36, секция 1.2 — 180 витков провода ПЭВ-2-0,9.
Наиболее важные преимущества описанною стабилизатора по сравнению с феррорезонаненым — малые нелинейные искажения выходного напряжения и почти полное отсутствие магнитного поля, отрицательно влияющего на работу цветных телевизоров.
Стабилизаторы напряжения
Это устройства для автоматического поддержания напряжения на уровне 220 В при его высоких или низких значениях в питающей электросети. Защищают от его резких и значительных скачков и перепадов, фильтруют входные помехи и обеспечивают качественное электропитание приборов и оборудования в пределах их паспортных характеристик, тем самым повышая надёжность их эксплуатации и продлевая срок службы.
Выпускаются однофазные (220 В) и трёхфазные (380 В) стабилизаторы напряжения. Они подразделяются на несколько типов в зависимости от принципа работы, рабочих и эксплуатационных характеристик. Единственный их недостаток — они не могут питать электроприборы как при слишком глубоких провалах (менее 80-90 вольт) и перенапряжения (более 310-320 вольт) электросети, так и при отключениях электричества.
Типы, устройство и принцип работы
Феррорезонансные стабилизаторы напряжения. Были разработаны в середине 60 годов прошлого века, их принцип работы основано на использовании явления магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей. Применялись такие устройства для регулировки напряжения питания бытовой техники (телевизор, радиоприёмник, холодильник и т.п.).
Феррорезонансный стабилизатор напряжения
Их преимущество заключается в высокой точности 1-3% и быстрой (для того времени) скорости регулирования. Недостаток — повышенный уровень шума и зависимость качества стабилизации от величины нагрузки. Современные устройства лишены этих недостатков, но стоимость их равна или выше стоимости ИБП (Источника Бесперебойного Питания) на такую же мощность, вследствие чего они широкого распространения в качестве бытовых не получили.
Электромеханические стабилизаторы напряжения. В 60-80-е годы прошлого века для регулирования напряжения применялись автотрансформаторы с ручной корректировкой (ЛАТР), вследствие чего приходилось постоянно следить за вольтметром (стрелочный или светящаяся линейка) и, при необходимости, вручную крутить ползунок с токосъёмными щётками. В настоящее время принцип работы автоматизирован с помощью электродвигателя с редуктором (сервопривода).
Электромеханический стабилизатор напряжения
Единственные достоинства электромеханических стабилизаторов напряжения — низкая цена и хорошая точность регулировки 2-3%. Недостатков много — низкая скорость регулирования из-за инерционности двигателя и повышенный уровень шума: шумит электродвигатель и редуктор, и практически постоянно, т.к. отслеживаются изменения с шагом 2-4 вольта. Плюс к этому, добавляется повышенный износ механический частей и недолгий общий ресурс работы устройства в целом, что подтверждается сроком гарантии всего в 1 год. Также при резком увеличении значений сети часто кратковременно отключается нагрузка, т.к. стабилизатор не успевает погасить этот скачок, и напряжение на ней превышает максимально допустимое значение.
Вследствие всего вышесказанного получили распространение как дешёвые стабилизаторы для питания недорогой домашней электротехники.
Электронные стабилизаторы напряжения. Наиболее широкий класс устройств ступенчатого регулирования, обеспечивающих исключительное постоянство электропитания нагрузки с заданной точностью в широких пределах изменения входной сети. Принцип работы основан на автоматическом переключении секций автотрансформатора с помощью силовых ключей (реле, тиристоры, симисторы).
Структурная схема электронного трансформаторного стабилизатора напряжения
К их достоинствам можно отнести: высокое быстродействие, очень широкий входной диапазон, отсутствие искажения формы напряжения, высокий КПД, низкий уровень шума (только от вентиляторов охлаждения). Точность стабилизации определяется количеством ступеней регулирования и, в зависимости от модели, может составлять от 5 до 0.5%, а некоторые модели даже имеют возможность коррекции в пределах 210-230 вольт для лучшей адаптации к импортному оборудованию. Необходимо особо отметить высокую надёжность 3-х фазных конфигураций, где каждую фазу в отдельности регулирует независимый однофазный блок.
Электронный трансформаторный стабилизатор напряжения
Несмотря на высокую стоимость, электронные стабилизаторы напряжения — это оптимальное соотношение цена/качество, и они заслуженно нашли наибольшее распространение на рынке высококачественных электроприборов.
Инверторные стабилизаторы напряжения. Самый молодой тип регуляторов, начал выпускаться во второй половине 10-х годов нашего столетия. Как и ИБП (источник бесперебойного питания), принцип работы основан на двойном преобразовании сетевого напряжения: сначала оно выпрямляется а затем заново преобразуется в переменное.
Структурная схема электронного инверторного стабилизатора напряжения
Их достоинства, в общем, такие же, как и у электронных стабилизаторов, но есть два существенных положительных отличия. Во-первых, они не содержат трансформаторов и поэтому имеют небольшой вес и габариты, а во-вторых, они ещё стабилизируют и частоту тока! К недостаткам можно отнести то, что в трёхфазных моделях при неполадках в любом контуре регулирования фазы два остальных тоже отключаются.
Электронные инверторные стабилизаторы напряжения
В общем, у инверторных стабилизаторов напряжения есть определённое будущее и существенный сектор применения
Основные характеристики
Мощность, отдаваемая в нагрузку, у качественных стабилизаторов эта характеристика постоянна и составляет 100% во всём рабочем диапазоне входного напряжения; в дешёвых моделях она будет падать пропорционально его снижению и может достигать 50-60% от номинала при значениях в сети 150-170 вольт. Запас по мощности должен составлять 25-30% от максимальной подключенной нагрузки.
Диапазон входного напряжения. Наряду с точностью стабилизации, является важнейшей характеристикой стабилизатора. Состоит из двух категорий:
- рабочий — когда отклонения питающей электросети находятся в допустимых пределах, при которых на выходе обеспечивается заявленная величина стабилизации, например 220±5%;
- предельный — когда стабилизатор переходит в режим компенсации сетевого напряжения, при котором его значения на выходе могут отличаться от номинала 220 В в большую или меньшую стороны до 15-18%. При превышении предельного диапазона, он обесточит нагрузку, сам при этом оставаясь подключенным к сети для её контроля, и при её возвращении обратно в рабочий, самостоятельно опять подаст напряжение в подключенные приборы.
Точность стабилизации выходного напряжения гарантируется только в рабочем входном диапазоне и может составлять 0,5-7% в зависимости от модели стабилизатора.
Перегрузочная способность — это устойчивость к кратковременным перегрузкам от электроприборов, имеющих высокие пусковые токи (например, электродвигатель погружного насоса, холодильника и т.п.).
Защита от перегрузки и короткого замыкания на выходе. В случае перегрузки стабилизатора напряжения, когда с него начинает сниматься мощность значительно превышающая номинальную в течение определённого периода времени (от 0,1 сек. до 1 мин. или немного более), срабатывает система защиты (время срабатывания зависит от величины перегрузки), которая отключит стабилизатор и тем самым предотвратит его поломку. Если в нём заложен функционал однократного повторного включения, то он снова включится в работу спустя некоторое время. Если при повторном включении перегрузка не устранилась, то он отключится окончательно, и уже потребуется вмешательство человека для выявления и устранения причин перегрузки или короткого замыкания.
Выходной контактор. В случае аварии стабилизатора или резкого импульсного скачка входного напряжения, он мгновенно отключит электроприборы и предотвратит их перегорание.
Коррекция выходного напряжения. Наличие в некоторых моделях стабилизаторов возможности задания специальных значений на выходе в диапазоне 210-230 вольт, что помогает решить одновременно несколько проблем:
- возможно установить западный стандарт 230В для импортных электроприборов, без подобной функции возможны сбои в их работе;
- для ламп накаливания можно установить 210 вольт, что значительно увеличит срок их службы, световой же поток останется в пределах, заявленных производителем.
Автоматическое включение стабилизатора при возврате входного напряжения в рабочий диапазон. Т.к. стабилизатор отключает нагрузку в случае выхода параметров электросети за предельные значения, он должен также автоматически и подключать её, если входное напряжение вернулось в рабочие пределы, иначе придётся это делать вручную.
Наличие на входе и выходе стабилизатора напряжения фильтров подавления импульсных помех. Это полезная функция, которая защитит электроприборы от помех в радиочастотном диапазоне.
Климатическое исполнение. Большинства выпускаемых стабилизаторов напряжения имеют защиту IP20 и предназначены для установки в помещениях с температурой окружающей среды +5…+35°С, с относительной влажностью воздуха 35-90%, с атмосферой, не содержащей пыли, водяных брызг и т.д. Если температура будет опускаться ниже 0°С, потребуется установка в шкаф с подогревом. Начиная с 2012 года ведущие производители начали выпуск стабилизаторов со специальной климатической обработкой внутренних узлов, рассчитанных на температуру эксплуатации от -40 до +40°С.
Гарантийный и реальный срок службы. Ведущие производители дают 5-6 летнюю гарантию на свои стабилизаторы напряжения, а общий срок их службы с неизменностью рабочих характеристик составляет не менее 12-13 лет.
Стоимость. Косвенный показатель качества и надёжности — каковым будет, например, инверторный стабилизатор напряжения Штиль IS8000 (РРЦ
51 280 руб.), как наиболее предпочтительный вариант по характеристкам и стоимости для большинства применений.
Устройство стабилизатора напряжения переменного тока
Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Архив статей и поиск
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте
Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки
Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники
Бесплатный архив статей
(500000 статей в Архиве)
Алфавитный указатель статей в книгах и журналах
Бонусы:
▪ Ваши истории
▪ Викторина онлайн
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Голосования
▪ Карта сайта
Дизайн и поддержка:
Александр Кузнецов
Техническое обеспечение:
Михаил Булах
Программирование:
Данил Мончукин
Маркетинг:
Татьяна Анастасьева
Перевод:
Наталья Кузнецова
При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua
сделано в Украине
Вариант стабилизатора напряжения переменного тока
Вышел из строя стабилизатор переменного напряжения Mustek Power Mate 625. В процессе поиска причины неисправности оказалось, что схема прибора во многом аналогична схеме электронно-релейного регулятора, описанного Г. Гаджиевым в [1]. После ознакомления с другими публикациями в журнале «Радио» было решено не ремонтировать отказавший прибор, в котором для коммутации обмоток автотрансформатора применены электромагнитные реле, а попытаться изготовить стабилизатор на основе электронных коммутаторов [2-5]. За основу было взято устройство, описанное в [5].
Из-за отсутствия силового автотрансформатора с таким числом отводов, как у примененного автором в этом устройстве (у имеющегося у меня выводов намного меньше), схему пришлось немного изменить (рис. 1). Взамен шифратора на элементах микросхемы К561ЛП2 применен импортный шифратор CD4532B [6] в паре с дешифратором этой же серии CD4028B (аналог К561ИД1). От дополнительной стабилизации образцового напряжения с помощью параметрического стабилизатора (в прототипе — R4VD3) отказался — интегральный стабилизатор напряжения DA1 (из серии 7812) поддерживает на выходе напряжение во вполне приемлемых пределах.
Для более полного использования изменения амплитуды Ux (без потерь на масштабирование) применен стабилитрон VD1. Добавлено пороговое устройство на стабилитроне VD2 и транзисторах VT1, VT2, отключающее стабилизатор от сети при превышении допустимого значения напряжения. Для упрощения налаживания делители на входах компараторов, составленные из требующих подбора постоянных резисторов, заменены многооборотными подстроечными резисторами R7-R10. Симисторные ключи дополнены так называемыми снабберами (шунтирующими симисторы последовательными RC-цепями), предотвращающими ошибочные включения симисторов, которые могут произойти от сетевых помех. В остальном схема не отличается от описанной в [5].
Рис. 1. Схема устройства (нажмите для увеличения)
Примененный мною понижающий трансформатор Т2 имеет сетевую обмотку с двумя отводами и две вторичные (на 44 и 48 В) с отводами от середины. В стабилизаторе оставлены четыре канала управления (для города этого вполне достаточно). До окончательной сборки были сняты характеристики автотрансформатора при нагрузке мощностью 500 Вт в вариантах коммутации сети или нагрузки. Понижающие обмотки соединялись согласно с сетевой по схеме автотрансформатора. В первом варианте стабилизатора коммутировалась нагрузка без применения демпфирующих цепей. Стабилизатор работал, но сбоил (работа этого варианта со снабберными цепями не проверялась). В рабочем варианте выбрана коммутация обмоток с постоянным подключением нагрузки. В связи с ее индуктивным характером в каждом канале применена демпфирующая цепь (R27C7-R30C10).
В соответствии с техническими характеристиками микросхемы CD4028B максимальный выходной ток одного канала — 10 мА, в связи с чем применены оптосимисторы МОС3063 стоком включения не более 5 мА.
Для питания устройства и получения управляющего напряжения Ux использован отдельный трансформатор T1 с встроенным термопредохранителем RH01-83 (250 В, 2 A, 83 о С), обозначенным на схеме как FU2. FU1 — плавкая вставка в цепи первичной обмотки этого трансформатора, FU3 — восстанавливающийся предохранитель вышедшего из строя стабилизатора.
Типы стабилитронов VD1 и VD2 зависят от параметров трансформатора Т1 (в первую очередь, от его коэффициента трансформации). При максимальном «рабочем» напряжении сети (в данном случае 250 В) напряжение на подстроечном резисторе R11 относительно общего провода должно быть около 12 В (напряжение питания микросхем), а при минимальном — стабилитрон VD1 не должен выходить из режима стабилизации. В авторском устройстве при сетевом напряжении 250 В напряжение на выходе выпрямителя VD3 поднимается до 32 В, а при 170 В опускается до 24 В, поэтому в качестве VD1 применен стабилитрон КС520В (напряжение стабилизации — 19. 21 В). Для срабатывания защиты при напряжении в сети 260 В выбран стабилитрон КС210Ж (напряжение стабилизации — 9. 11 В).
Детали устройства смонтированы на трех печатных платах из фольгированного стеклотекстолита. Постоянные резисторы — любые малогабаритные, подстроечные — многооборотные проволочные (например, СП5-2), конденсатор С2 — КМ, С7-С10 — К73-17, остальные — оксидные импортные. Транзистор BC547С заменим любым из серии КТ3102, а BC557С — из серии КТ3107. Для коммутации обмоток трансформатора T2 желательно применить симисторы серии ВТА41, так как все их выводы изолированы от крепежного фланца, и это позволяет установить их без изоляции на общий теплоотвод, который необходим при мощности нагрузки более 300. 500 Вт. Вместе с трансформаторами T1, T2 платы размещены в корпусе вышедшего из строя стабилизатора Mustek Power Mate 625 (рис. 2).
Рис. 2. Стабилизатор Mustek Power Mate 625
Собранный стабилизатор поддерживает на питаемой нагрузке напряжение в пределах допускаемого отклонения от номинального значения (±10%) при изменении напряжения сети от 180 до 250 В. Примерное значение сетевого напряжения индицирует один из светодиодов HL3-HL6. При отклонении напряжения за указанные пределы нагрузка отключается, а на передней панели устройства светится один из светодиодов HL1, HL2, показывая, в какую сторону изменилось напряжение (соответственно велико оно или мало).
Если трансформатор позволяет, число каналов управления можно увеличить (увеличив соответственно число компараторов и симисторных ячеек). Работа и настройка устройства в основном не отличаются от описанных в статье [5].
- Гаджиев Г. Электронно-релейный регулятор напряжения. — Радио, 2009, № 10, с. 23.
- Годин А. Стабилизатор переменного напряжения. — Радио, 2005, № 8, с. 33-36.
- Озолин М. Усовершенствованный блок управления стабилизатора переменного напряжения. — Радио, 2006, № 7, с. 34, 35.
- Гаджиев Г. Оптосимисторный коммутатор мощной нагрузки. — Радио, 2010, № 10, с. 33.
- Гаджиев Г. Стабилизатор напряжения переменного тока. — Радио, 2013, № 2, с. 20,21.
- CMOS 8-Bit Priority Encoder. — URL: ti.com/product/CD4532B/technicaldocuments.
Смотрите другие статьи раздела Стабилизаторы напряжения.
Читайте и пишите полезные комментарии к этой статье.