Schetchiksg.ru

Счетчик СГ
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как работает трансформатор тока для счетчика

Трансформатор тока: принцип работы для измерения параметров электросетей

Трансформаторы тока (далее по тексту – ТТ) относятся к категории устройств, преобразующих параметры электромагнитных систем при помощи индуктивно связанных обмоток магнитопроводов. Принцип действия трансформатора тока, основанный на законе электромагнитной индукции, используется в ТТ при передаче и распределении электрической энергии, в развязках электрических цепей, при измерении параметров высоковольтных сетей и токов большой мощности. На рис. ниже показан трансформатор тока модели ТЛМ-10, используемый в системах управления и измерений электрических цепей с номинальным напряжением 10 кВ.

Трансформатор тока модели ТЛМ-10

Индуктивные связи в ТТ

Принцип работы трансформатора тока представляет собой техническую реализацию закона электромагнитной индукции Фарадея, согласно которому в замкнутом токопроводящем контуре при изменении магнитного потока возникает электродвижущая сила, называемая в современной электродинамике индуцированной ЭДС. Простейшим объяснением для «чайников», слабо представляющих, из чего состоит трансформатор, не знающих его устройство или что такое индуцированная ЭДС, и как она может влиять на работу сложнейших трансформаторных систем, послужит схема индуктивных связей трансформатора, приведенная ниже.

Дополнительная информация. Индуктивными связями называют связи между электрическими цепями посредством магнитных полей.

Схема индуктивных связей трансформатора

На схеме показаны три основных элемента трансформатора:

  • поз. 1 – магнитопровод, служащий для размещения токопроводящих контуров-обмоток;
  • поз. 2 – первичный контур, называемый первичной обмоткой, к которому подводят электроэнергию переменного тока;
  • поз. 3 – вторичный контур, называемый вторичной обмоткой. К нему подключается приемник электроэнергии.

При подаче на первичный контур переменного тока напряжением u1 через первичную обмотку начинает проходить переменный ток I1 , создающий магнитный поток Ф, изменяющийся по такой же синусоидальной гармонике. При этом в обмотке первичного контура индуцируется переменная ЭДС (электродвижущая сила) e1 . Контуры трансформатора находятся в индуктивной связи, поскольку через их обмотки проходит единый поток Ф. Соответственно, изменения магнитного поля в первичном контуре будут изменять магнитный поток, а он, в свою очередь, будет индуцировать во вторичном контуре электродвижущую силу e2 , изменяющуюся в той же гармонике. Под воздействием e2 во вторичном контуре возникает переменный ток I2. При замыкании вторичной обмотки на нагрузку ZН создается вторичная цепь, которая может служить для применения в приемниках энергии, в выпрямителях, усилителях и других приборах с развязанными электрическими цепями.

По своей сути трансформатор является передатчиком энергии между проводящими контурами, преобразуя их электромагнитные характеристики (лат. transformare означает преобразовывать) в силу тока I , сопротивление R и напряжение U. В соответствии со сложившейся терминологией проволочные или ленточные изолированные проводящие обмотки, намотанные на магнитопровод из ферромагнитных сталей, называют катушками, а сам магнитопровод – сердечником катушки.

Это важно! Передачу энергии путем создания ЭДС в контурах и трансформацию ее характеристик возможно осуществлять лишь для переменного тока. Постоянный ток также формирует магнитное поле, однако оно является постоянным и неизменяемым, тогда как ЭДС в обмотках катушек трансформатора образуется только при изменении окружающего магнитного поля.

На рис. ниже показана конструкция традиционного трансформатора, состоящего из двух катушек и сердечника, собранного из стальных пластин.

Конструкция традиционного трансформатора

Особенности трансформации энергии для ТТ

Для чего нужен трансформатор, в чем состоит его практическое предназначение? Зачем трансформаторные приборы присутствуют во всех электрических системах? На все вопросы ответ один – в практике эксплуатации электрических сетей трансформаторы выполняют важнейшую функцию изменения величины тока или напряжения, поданного от генератора переменного тока, для дальнейшего использования в промышленном электрооборудовании и бытовой технике. Данное преобразование называют масштабированием, поскольку сами трансформаторные приборы энергию не создают и не преобразовывают, а всего лишь увеличивают или уменьшают показатели системы переменного тока. Для количественной оценки изменения преобразованного параметра сети – тока или напряжения, введено понятие коэффициента трансформации K, показывающего, во сколько раз отличаются значения этого параметра на входе и выходе. Для напряжения коэффициент трансформации определяется по соотношению KU = U2 /U1, для тока – по формуле:

Если величины напряжения или тока на выходе превышают единицу (K>1), трансформатор называется повышающим. При К Особенности конструкции ТТ

Трансформаторы напряжения, по аналогии с ТТ, выполняют функцию изменения другого параметра электрической сети – напряжения. Однако, при сопоставлении, чем отличается трансформатор тока от трансформатора напряжения (далее – ТН), становится очевидным различное предназначение трансформаторов тока и напряжения:

  1. ТТ уменьшают величину тока до показателей, допускающих безопасное подключение измерительной аппаратуры или систем релейной защиты;
  2. Трансформаторы напряжения изменяют напряжение с целью подгонки определенной электрической системы под нужные стандарты. Изменяя параметры напряжения, установленные для универсальной электрической сети (например, трехфазные 220 и 380 В), с помощью ТН можно подключать любое промышленной оборудование и бытовую технику.

ТТ имеет существенное отличие от устройства ТН, поскольку заложенный в трансформатор тока принцип работы вносит свои особенности в конструкцию основных элементов ТТ и прибора в целом. К числу основных особенностей ТТ относят:

  • выполнение первичной обмотки просто в виде одиночной толстой шины с целью минимизации количества витков;
  • намотка провода вторичной обмотки на сердечник большой площади сечения;
  • ток во вторичном контуре ТТ равен 5А и реже 1А.
Читайте так же:
Как оплатить электроэнергию по трехтарифному счетчику

Измерительные ТТ и ТН

Трансформаторные устройства, регулируя величины напряжения и тока, обеспечивают стабильность энергетической системы. Кроме подачи электропитания требуемых параметров на приборы и оборудование, трансформаторы «помогают» проводить измерения параметров сети с большими значениями напряжения и тока для определения с высокой точностью их номинальных показателей. Назначение измерительных трансформаторов состоит в следующем:

  • отделение цепи измерительных устройств (амперметров, вольтметров, электросчетчиков и других приборов) или систем релейной защиты от сети с высоким напряжением или током;
  • преобразование высоковольтного напряжения или мощного тока до величин, удобных для измерений стандартными приборами;
  • получение максимально точного правильного результата измерений.

Измерительные трансформаторы тока и напряжения считаются вспомогательными приборами и используются совместно со средствами измерения и реле в сетях переменного тока. Если невозможно напрямую подключиться измерительными приборами в высоковольтную сеть, то здесь будет нужен трансформатор тока. Средства измерения подключаются к его вторичной обмотке и получают все необходимые данные по замеряемому параметру.

На рис. ниже показан измерительный трансформатор тока модели ТПЛ-СЭЩ 10 кВ номинальным напряжением 10 кВ, который предназначен для работы с номинальным первичным током в диапазоне от 10 до 2000 А при номинальном вторичном токе в 5 А.

Измерительный трансформатор тока ТПЛ-СЭЩ 10 кВ

Область применения ТТ

Весь перечень прикладных задач, указывающий, для чего нужны трансформаторы тока, можно свести к двум основным направлениям:

  1. Измерение параметров сети с помощью доступных дешевых измерительных приборов, рассчитанных на малый ток (до 5 А) и низковольтное напряжение. Тем самым обеспечивается безопасное обслуживание измерительной аппаратуры;
  2. Контроль параметров электротока по всей цепи, в которой установлены ТТ. При достижении током предельного (аварийного) значения срабатывает аппаратура защиты, отключающая эксплуатируемое оборудование.

Это важно! Установка трансформаторов тока в контролируемых цепях позволяет концентрировать измерительную аппаратуру на специальных щитах или в составе пультов управления. Правильно выполненный монтаж трансформаторов тока дает возможность размещения измерительных приборов на безопасном удалении от коммутаций цепи и дистанционно управлять работой электрооборудования в автоматическом режиме.

Классы точности ТТ

Для ТТ определены пять классов точности, характеризующих в процентах допустимую погрешность по току при его номинальных значениях:

  • класс точности 0,2 ограничивает погрешность ТТ в пределах 0,2% и применим для трансформаторных устройств, используемых в лабораторных измерениях;
  • класс точности 0,5 допустим для ТТ, обслуживающих аппаратуру точной защиты и оборудование высокоточной наладки;
  • класс 1 – для цепей промышленного оборудования с подключением вольтметров, амперметров и устройств релейной защиты;
  • классы 3 и 10 – промышленные установки, релейные защиты.

Использование ТТ для локальных измерений в энергетических системах и в комплексе с современными системами измерений и контроля позволяет значительно повышать ресурс безаварийной эксплуатации промышленного электрооборудования и сложнейшей бытовой техники. Внедрение ТТ в автоматизированные системы управления электросетями позитивно влияет на снижение потерь электроэнергии в периоды ежедневных пиковых нагрузок и ставит барьеры для прямых хищений электрической энергии.

На рис. ниже показано подключение счетчика электроэнергии через трансформатор тока.

Подключение счетчика электроэнергии через трансформатор тока

Видео

Трансформаторы тока для электросчетчиков — характеристики и варианты подключения

При эксплуатации энергетических систем разного типа часто возникают ситуации, требующие осуществить перевод электрических величин в аналоги с определенными соотношениями.

Трансформаторы тока для электросчетчиков позволяют значительно расширить стандартные пределы измерений приборами учёта.

Номинальное напряжение трансформатора тока

Одним из основных параметров, относящихся к трансформаторам тока для электрических счётчиков, является уровень номинального напряжения, который указывается в паспорте на прибор. Номинальные значения напряжения варьируется от 0.66кВт до 1150кВт:

  • 0,66 кВт;
  • 6.0 кВт;
  • 10 кВт;
  • 15 кВт;
  • 20 кВт;
  • 24 кВт;
  • 27 кВт;
  • 35 кВт;
  • 110 кВт;
  • 150 кВт;
  • 220 кВт;
  • 330 кВт;
  • 500 кВт;
  • 750 кВт;
  • 1150 кВт.

Номинальные значения уровня первичного тока на электрической цепи обозначают токовые показатели на первичной трансформаторной обмотке.

Параметры вторичного номинального тока — это стандартные показатели на обмотке вторичного типа. Определение таких токовых потоков осуществляется по номинальным значениям мощности и напряжения. При этом первичный тип обмотки подключается к источнику электрической энергии, а замыкание вторичной обмотки приходится на устройства измерительного или защитного типа, с низкими показателями внутреннего сопротивления.

Класс точности

При правильном выборе токового трансформаторного устройства у потребителя появляется реальная возможность подключать измерительные и защитные приборы к высоковольтным электрическим линиям. Уровень класса точности – одна из наиважнейших характеристик, указывающих на измерительную погрешность, которая не должна быть выше, чем параметры по нормативным документам.

Класс точности определяется несколькими основными факторами, включая погрешности по току и углу, а также показатели относительной полной погрешности. Первые два понятия всегда характеризуются током намагничивания.

Принцип работы трансформатора тока

В приборах промышленного назначения используется несколько классов точности:

  • 0.1
  • 0.5
  • 1.0
  • 3.0
  • 10Р

В соответствии с действующим на сегодняшний день в нашей стране ГОСТом, класс точности должен быть ориентирован на токовые погрешности, поэтому для показателей в ±40′ предполагается класс 0.5, а для ±80′ – класс 1.0. Следует отметить, что классы 3.0 и 10Р по существующим правилам не нормируются.

Наличие в маркировке буквенного обозначения «S» свидетельствует о классе точности в пределах 0.01-1.2. Класс 10Р используется в защитных цепях, а нормирование осуществляется в соответствии с относительной полной погрешностью не более десяти процентов. Допускается применение приборов с классом точности 1.0, но только если электрический счетчик обладает классом точности в две единицы.

Читайте так же:
Электросчетчики соэ 52 60 31ш

Для учёта в коммерческой сфере уровень класса точности должен составлять 0.5S, а для учёта технического – 1.0S.

Номинальный ток вторичной обмотки

Строение вторичной обмотки у токовых трансформаторов, которые предназначены для напряжения не более тысячи вольт, имеет некоторые отличия. На высоковольтном приборе устанавливается как минимум две вторичные обмотки.

Принцип их действия аналогичен функционированию повышающего трансформатора. Вне зависимости от уровня мощности первичной обмотки, номинальные показатели тока на вторичной обмотке, как правило, стабильно составляют 5А.

Конструкция трансформатора тока

Номинальные значения вторичного тока «I2н» указываются в таблице прилагаемого к устройству паспорта. Номинальные токи на вторичной обмотке равны единице или 5А, но вторые показатели допускаются исключительно в устройствах с первичными токами, не превышающими 4000А.

Однако, допускается также изготовление современных токовых трансформаторных приборов по индивидуальным заказам с номинальными показателями токов вторичного типа на уровне 2.0А или 2,5А.

Существуют нормы и стандарты, по которым срок эксплуатации электросчетчика ограничен определенным периодом.

Инструкцию по монтажу однофазного счетчика смотрите здесь.

Варианты установки индукционного счетчика подробно рассмотрены в этом материале.

Номинальный ток первичной обмотки

В зависимости от конструкционных особенностей первичной обмотки, трансформаторы тока могут быть не только многовитковыми, но также одновитковыми и шинными.

На сегодняшний день наибольшее распространение получил второй вариант исполнения устройства.

Одновитковые модели токовых трансформаторов представлены разновидностями, не имеющими индивидуальную первичную обмотку или с наличием индивидуальной обмотки первичного типа.

Для одновитковых моделей без собственной первичной обмотки характерно встроенное, шинное или разъемное выполнение. Первичный токовый уровень, в этом случае, всегда определяется в соответствии со стандартизированными номинальными токами.

Токи номинальные первичного типа «I1н» указываются в паспортных табличных данных трансформаторного прибора, и определяют стандартные коэффициенты трансформации в виде соотношения номинальных токовых показателей на двух видах обмотки устройства.

Подбирать коэффициент трансформации необходимо в строгом соответствии с расчетной нагрузкой, а также с обязательным учетом возможности функционирования установленного устройства в аварийных ситуациях. Токовый номинал на первичной обмотке не может быть меньше, чем максимальные рабочие значения тока эксплуатируемой электрической установки: I2ном.тт>Imах.эу.

Схема подключения

Рассмотрим, как подключить трансформатор тока. В зависимости от конструктивных особенностей трансформатора тока для электрических счётчиков различается несколько видов таких приборов:

  • токовые трансформаторы, предназначенные для наружного монтажа в ОРУ;
  • токовые трансформаторы, предназначенные для закрытого монтажа распределительных устройств;
  • токовые трансформаторы встроенного типа;
  • токовые трансформаторы, предназначенные для монтажа на изоляторы проходного типа;
  • токовые трансформаторы в переносном или мобильном исполнении.

Токовыми трансформаторами обеспечивается полноценная изоляция эксплуатируемых силовых электрических цепей. Измерительное устройство в быту – гарантия безопасной работы, поэтому специалисты рекомендуют использовать так называемую гальваническую развязку. К недостаткам этого способа установки можно отнести достаточно большое количество электропроводов.

Подключение счетчика электрической энергии через токовые трансформаторы осуществляется посредством десятижильных кабелей. В конструкции применяются раздельные цепи, как на ток, так и напряжение. Стандартная схема установки предполагает обязательное подсоединение трех элементов электросчетчика с соблюдением правил полярности при прямом чередовании фаз относительно «U».

Схема подключения электросчетчика через трансформаторы тока

В процессе самостоятельного монтажа измерительных приборов электрической энергии, токовые трансформаторы подключаются к цепным разрывам при помощи специальных, очень удобных в применении зажимов «Л-1» и «Л-2».

Электротехнический шкаф защищает счетчик от пыли, влаги, грязи. Щиток электрический под счетчик и автоматы — критерии выбора рассмотрим далее.

Знаете ли вы, что такое коэффициент трансформации счетчика электроэнергии? Читайте эту информацию, если интересно.

Видео на тему

Все о трансформаторах тока. Классификация, конструкция, принцип действия

Трансформаторами тока (ТТ) принято называть электротехнические устройства, предназначенные для трансформирования величин токов (с больших на меньшие) до требуемых значений, с целью подключения приборов измерения, устройств РЗиА. Трансформаторы тока получили широкое применение в энергетике и являются составным элементом любой электростанции или подстанции.

Установка в силовых электроустановках трансформаторов низкой мощности позволяет также обезопасить производство работ, поскольку их использование разделяет цепи высокого / низкого напряжения, упрощает конструктивное исполнение дорогостоящих измерительных приборов, реле.

  1. Конструкция и принцип действия трансформатора тока
  2. Классификация трансформаторов тока
  3. Трансформаторы тока разных производителей
  4. Трансформаторы тока ТОЛ-НТЗ-10-01
  5. Расположение вторичных выводов:
  6. Требования к надежности
  7. Пример условного обозначения опорного трансформатора тока с литой изоляцией
  8. Опорные трансформаторы тока TОП-0,66
  9. Проходные шинные трансформаторы тока для внутренней установки BB, BBO

Конструкция и принцип действия трансформатора тока

Трансформаторы тока конструктивно состоят из:

  • замкнутого магнитопровода;
  • 2-х обмоток (первичной, вторичной).

Поскольку сопротивление измерительных устройств незначительно, то принято считать, что все трансформаторы тока работают в режиме близком к КЗ.

Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.

Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета.

К этим обмоткам в обязательном порядке должна быть подключена нагрузка.

Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.

Читайте так же:
Кто имеет право установки счетчика электроэнергии

Интересное видео о трансформаторах тока смотрите ниже:

Погрешность ТТ определяется в зависимости от:

  • сечения магнитопровода;
  • проницаемости используемого для производства магнитопровода материала;
  • величины магнитного пути.

Значительное возрастание сопротивления нагрузки во вторичной цепи генерирует повышенное напряжение во вторичной цепи, что приводит к пробою изоляции и, как следствие, выходу из строй трансформатора.

Предельное значение сопротивление нагрузки указывается в справочных материалах.

Классификация трансформаторов тока

Трансформаторы тока принято классифицировать по следующим признакам:

  1. В зависимости от назначения их разделяют на:
    1. защитные;
    2. измерительные;
    3. промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
    4. лабораторные.
  2. По типу установки разделяют устройства:
    1. наружной установки (размещаемые в ОРУ);
    2. внутренней установки (размещаемые в ЗРУ);
    3. встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
    4. накладные — устанавливаемые сверху на проходные изоляторы;
    5. переносные (для лабораторных испытаний и диагностических измерений).
  3. Исходя из конструктивного исполнения первичной обмотки ТТ разделяют на:
    1. многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
    2. одновитковые;
    3. шинные.
  4. По способу исполнения изоляции ТТ разбивают на устройства:
    1. с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
    2. с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
    3. имеющие заливку из компаунда.
  5. По количеству ступеней трансформации ТТ бывают:
    1. одноступенчатые;
    2. двухступенчатые (каскадные).
  6. Исходя из номинального напряжения различают:
    1. ТТ с номинальным напряжением — выше 1 кВ;
    2. ТТ с напряжением – до 1 кВ.

Ещё одно интересное видео о схемах включения трансформаторов тока:

Трансформаторы тока разных производителей

Рассмотрим несколько трансформаторов тока разных производителей:

Трансформаторы тока ТОЛ-НТЗ-10-01

Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.

Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.

Рабочее положение трансформатора в пространстве – любое.

Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:

  • класс нагревостойкости «В» по ГОСТ 8865-93;
  • уровень изоляции «а» и «б» по ГОСТ 1516.3-96.

Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.

Расположение вторичных выводов:
  • «А» — параллельно установочной поверхности;
  • «В» — перпендикулярно установочной поверхности;
  • «С» — из гибкого провода, параллельно установочной поверхности;
  • «D» — из гибкого провода, перпендикулярно установочной поверхности.

Требования к надежности

Для трансформаторов установлены следующие показатели надежности:

  • средняя наработка до отказа – 2´105 ч.;
  • полный срок службы – 30 лет.
Пример условного обозначения опорного трансформатора тока с литой изоляцией

ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2

  • 10 — номинальное напряжение;
  • «0» — конструктивный вариант исполнения;
  • «1» — исполнение по длине корпуса;
  • «А» — вторичные выводы расположенные параллельно установочной поверхности;
  • «Б» — изолирующие барьеры;
  • 0,5S — класс точности измерительной вторичной обмотки;
  • (Fs)5 — коэффициент безопасности приборов вторичной обмотки для измерения;
  • 10Р — класс точности защитной вторичной обмотки;
  • 10 — номинальная предельная кратность вторичной обмотки для защиты;
  • 5 — номинальная вторичная нагрузка обмотки для измерения;
  • 15 — номинальная вторичная нагрузка обмотки для защиты;
  • 300 — номинальный первичный ток;
  • 5 — номинальный вторичный ток;
  • 31,5 — односекундный ток термической стойкости;
  • «УХЛ» — климатическое исполнение;
  • 2 – категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.

Опорные трансформаторы тока TОП-0,66

Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам в установках переменного тока частоты 50 или 60 Гц с номинальным напряжением до 0,66 кВ включительно. Испытательное одноминутное напряжение промышленной частоты — 3 кВ.

Трансформаторы класса точности 0,2; 0,5; 0,2S и 0,5S применяются в схемах учета для расчета с потребителями, класса точности 1,0 — в схемах измерения.

Корпус трансформаторов выполнен из самозатухающих трудногорючих материалов. Трансформаторы изготавливаются в исполнении «У» или «Т» категории 3 по ГОСТ 15150, предназначены для работы в следующих условиях:

  • высота над уровнем моря не более 1000 м;
  • температура окружающей среды: при эксплуатации — от минус 45°С до плюс 50°С, при транспортировании и хранении — от минус 50°С до плюс 50°С;
  • окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;
  • рабочее положение — любое.

Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.

Проходные шинные трансформаторы тока для внутренней установки BB, BBO

Изготовитель — Фирма ООО «ABB»

Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).

Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.

Читайте так же:
Как подключается двухфазный счетчик

Трансформаторы спроектированы и изготовлены согласно следующим стандартам:

  • МЭК, VDE, ANSI, BS, ГОСТ и CSN.
  • Максимальное напряжение — 3.6 кВ — 25 кВ
  • Первичный ток — 600 A – 5000 A
  • Сухой трансформатор с изоляцией из эпоксидного компаунда для внутренней установки
  • Предназначены для измерения и защиты, могут иметь до трех вторичных обмоток
  • Исполнения с возможностью переключения коэффициента трансформации на стороне первичной или вторичной обмоток.

Назначение и принцип действия измерительных трансформаторов

  • Статьи
  • Вопрос ответ
  • Новости
  • Чертежи и опросные листы
  • Вебинары
  • Калькулятор шины
  • Пуско-наладочные работы
  • Качество товара, гарантийный срок

На предприятиях в энергетических установках требуется постоянный контроль режимов функциональности оборудования. Контроль выполняют с помощью учета электроэнергии и наблюдением за показаниями приборов нагрузки и рабочего и сетевого напряжения.

Приборы для измерения тока нагрузки, рабочего напряжения в высоковольтных установках подключаются через трансформаторы тока и напряжения. Кроме измерения трансформаторы нужны для присоединения защитных устройств и реле.

Для чего нужны измерительные трансформаторы тока и напряжения

Трансформатор принадлежит к классу статических электромагнитных аппаратов, который преобразует ток одного напряжения в переменный ток другого напряжения. Измерительные трансформаторы признаны одними из самых надежных элементов в системе энергообеспечения.

Помимо определения показателей нагрузки и напряжения служат для присоединения аппаратуры автоматического регулирования и защитных устройств. С помощью измерительных трансформаторов:

снижают габариты и вес приборов измерения;

повышают уровень безопасного обслуживания оборудования;

предупреждают последствия от ошибочных действий электротехнического персонала;

расширяют пределы измерения переменного тока.

Назначение трансформаторов напряжения

Подобное оборудование относится к однофазным устройствам, через которые присоединяют киловольтметры, фазометры для обозначения правильности чередования фаз, ваттметры для определения мощности и для подключения защитных реле в цепях напряжения 3, 6, 10 кВ промышленной частоты.

Обмотки первичного и вторичного напряжения трансформатора ТН отличаются сопротивлением большой величины и малой мощностью. Работа происходит в режиме холостого хода. Стандартное номинальное напряжение вторичной обмотки не бывает более 100 В и имеет рабочий ток от 1 до 5 А.

Рис. №1. Трансформатор напряжения масляный 6 кВ. НТМИ

Рассмотрим какие бывают трансформаторы напряжения.

Классификация трансформаторов напряжения

Типы измерительных трансформаторов напряжения включают в линейку изделия, классифицируемых следующим образом:

однофазные трансформаторы с одним заземленным концом первичной обмотки. К заземляемым относятся и трехфазные тр-ры с заземленной нейтралью катушки первичного напряжения;

незаземляемые тр-ры напряжения с полностью изолированными от «земли» участками, зажимами «первички»;

каскадный тип с обмоткой первичного напряжения, разделенной на несколько последовательных секций. В конструкции предусмотрены обмотки, выравнивающие напряжение. В наличии есть связующая катушка, которая служит для передачи мощности к обмотке вторичного напряжения;

емкостный ТН с делителем;

двухобмоточный ТН с одной обмоткой вторичного напряжения;

трехобмоточный ТН с двумя обмотками: основного напряжения и дополнительной.

Рис. №2. Трансформатор напряжения, литого типа, опорный с заземленным выводом первичной обмотки, 3НОЛ-СВЭЛ-6. Используется для КРУН, КРУ, КСО

Рис. №3. Трехфазный антирезонансный масляный трансформатор для сетей с изолированной нейтралью

Чтобы понять для каких задач нужны измерительные трансформаторы рассмотрим назначение и разберем принцип действия оборудования.

Устройство трансформаторов напряжения

Конструкцию ТН рассмотрим на примере лабораторных трансформаторов НЛЛ, используемыми для проверки работы большинства трансформаторов измерения и приборов.

Трансформаторы напряжения на 3, 6 или 10 кВ имеет магнитопровод с конструкцией из электротехнической стали в основном стержневого типа. На магнитопроводе расположена внутренняя вторичная обмотка. Первичка представляет собой две секции, которые соединены между собой.

Изоляции представляет собой заливку компаудом, что создает монолитный блок с высокой степенью электрической прочности от попадания влаги и внешних повреждений.

Выводы первичной обмотки размещаются вверху корпуса трансформатора.

С торца трансформатора на клеммнике размещены выводы вторичной обмотки и контакты заземления.

Измерительные трансформаторы напряжения, условия безопасной эксплуатации

Для обеспечения рабочих условий эксплуатации клеммы вторичной обмотки присоединяют к измерительными приборам или защитному оборудованию. Одну из клемм и основание оборудования заземляют.

Цепи при вторичной работе не замыкают, иначе может произойти термическое разрушение.

Если существует не использованная вторичная обмотка ее оставляют открытой, заземлив одну из клемм. Разомкнутая треугольная цепь должна включать резистор соответствующего напряжения и номинальной мощности вторички. Заземление цепи производится по техническим рекомендациям.

Нейтральный вывод первичной обмотки однофазного трансформатора заземляется только в нейтральную систему замыкания.

Будьте уверены, что правильный выбор и эксплуатация измерительных трансформаторов приведут вас к объективным показателям нагрузки и качества электрической сети.

Рис. №6. Схема подключения трансформатора напряжения где: 1 – первичная обмотка, 2 – магнитопровод, 3 – обмотка вторичного напряжения

Рис. №7. Размещение трансформатор напряжения в ячейке КРУН, подключение к питающей сети через предохранители

Назначение и принцип действия трансформаторов тока

Трансформаторы тока преобразуют первичный ток во вторичный ток меньшей величины в процессе гальванического разделения цепи. Они служат для включения амперметров и токовых катушек приборов измерения, отличающихся очень малым сопротивлением.

Трансформаторы тока постоянно работают в режиме короткого замыкания. Вторичная цепь защищается от сильных токов за счет эффекта насыщения стального сердечника.

Применяются ТТ там, где затруднительно произвести замеры токовых величин напрямую.

Читайте так же:
Установка расходомера счетчик электромагнитный взлет эр

С использованием измерительных трансформаторов выполняют учет потребления электроэнергии.

О измерительных трансформаторах напряжения иы вкратце узнали. За более подробной информацией обращайтесь к менеджеру компании «КубаньЭлектрощит» Задавайте вопросы на сайте. Мы ответим в самые короткие сроки.

Классификация трансформаторов тока

Типы измерительных трансформаторов тока подразделяют на следующие классы:

по функциональности: на измерительные и защитные;

по току: постоянного и переменного тока;

по коэффициенту трансформации: одно и многодиапазонные;

по способу монтажа: внутреннего и наружного размещения, встроенные, накладные;

по напряжению: низкого и среднего;

по типу изготовления и диэлектрическому материалу: газо- и маслонаполненные, сухие.

Рис. №4. Внешний вид трансформатора тока ТОЛ-СЭЩ-20

Рис. №5. Опорный трансформатор тока ТОЛ-СЭЩ-10, внешний вид

Измерительные подключают напрямую к считывающему, записывающему и вычисляющему измерительному оборудованию. Также их подключают к защите от сверхтоков. Разделяются на однопроводниковые ТТ и трансформаторы с первичной обмоткой. Однопроводниковый трансформатор – это устройство с проемом для первичной цепи, он устанавливается на первичный проводник.

Мощность трансформаторов тока зависит от коэффициента трансформации и поперечного сечения сердечника.

При низком токе первичной обмотки применяется трансформатор тока с высокой пропускной способностью. Для того чтобы получить трансформатор тока с первичной обмоткой через однопроводниковый трансформатор несколько раз пропускают первичный проводник.

Маркировка клемм первичной обмотки: Р1 (К) и Р2 (L), вторичной S1 (k) S2 (i). Полярность соответствует направлению прохождению тока.

Трансформатор постоянного тока

Трансформатор для измерения постоянного тока работает по принципу магнитного усилителя и включает в свою конструкцию ферромагнитный сердечник и две обмотки постоянного и переменного тока.

Устройство трансформаторов тока

Большинство измерительных трансформаторов тока выполнены в виде литой и опорной конструкции. Изоляция, например, как у трансформаторов тока ТОЛ-СЭЩ-10-IV выполнена из циклоалифатической смолы, защищающей обмотки от влаги и всех внешних повреждений. Катушки первичного напряжения выполнены из 2, 3 или 4 магнитопроводов со вторичными обмотками.

Эксплуатационные условия для трансформаторов тока

Важно. Трансформаторы тока запрещено включать в линию без измерительного прибора.

Для безопасной эксплуатации

Чтобы увеличить степень надежности ТТ и обеспечить безопасную эксплуатацию кожух трансформатора и одну из клемм «вторички» необходимо заземлить.

Вторичная обмотка не эксплуатируется при разомкнутой цепи, а та обмотка, которая не используется закорачивается и заземляется.

Трансформаторы тока с ответвителем емкостного делителя присоединяются к индикатору. Неиспользованное ответвление заземляют.

Обслуживание измерительных трансформаторов

Перед началом работы с поверхности трансформаторов удаляется смазка, пыль и прочие загрязнения. Протирка производится с использованием уайт-спирита. Ветошь не должна оставлять ворс.

Трансформатор исследуется на наличие сколов, трещин и наличие следов коррозии.

После визуального осмотра трансформатор подвергают испытанию или проверяют прибором/мегомметром (2500 В) на достаточность сопротивления изоляции. Вторичная обмотка проверяется мегомметром со шкалой деления на 1000 В.

Ток холостого хода проверяется со стороны вторичной обмотки под напряжением равным 1,2 от номинального. Отличие полученного результата не должно быть отличным от паспортного больше чем на ±10%.

Основное требование к трансформаторам – номинальная мощность не должна быть больше указанных в паспорте изделия.

Качество электроэнергии в сети должно быть соответствующим требованиям ГОСТ 32144.

Установка трансформатора должна производиться на место с обеспеченным доступом к клеммным контактам.

При обслуживании трансформатора измерения проверяют надежность контактного соединения.

Разомкнутые треугольные обмотки однофазных индукционных ТН обеспечивают безаварийность кабельных систем распределения энергии.

Для повышения надежности разомкнутых треугольных обмоток трансформатора напряжения в цепь добавляют стабилизаторы напряжения, ограничители, стабилитроны. Эти устройства поддерживают работоспособность систем распределения электроэнергии после аварий и сбоев.

Работы по обслуживанию измерительных трансформаторов производятся по наряду в соответствии с технологическими картами. Капитальный ремонт, например, у трансформаторов тока не делают. Если испытания и замеры сопротивления основной изоляции показали неудовлетворительные результаты трансформатор меняют на другой. Основная изоляция должна иметь сопротивление не менее 300 МОм.

Вторичная обмотка в отключенном и отсоединенном состоянии должна показать сопротивление не менее 50 МОм, с подключенными вторичными цепями не менее 1 МОм.

При обслуживании трансформаторов тока проверяют переходное сопротивление болтового контактного соединения. Оно не должно превышать 33 мкОм для контактов на 2000 А и не выше 60 мкОм для контактных соединений на 630 А.

Технология ремонта измерительных трансформаторов: разборка магнитопровода, демонтаж и ремонт катушек, перемотка обмоток, замена пластин магнитопровода и прочее схожи с ремонтом силовых трансформаторов. На время ремонта трансформатора обмотки закорачивают между собой, чтобы исключить возможный контакт и обратную трансформацию и напряжение при выполнении ремонтных работ.

Важные примечания

В индукционных однополюсных измерительных трансформаторах тока при замыкании цепи и во время затухания токов замыкания на «землю» возникает феррорезонанс, следствием которого является перегрев, появляется высокое напряжение, а сам трансформатор может разрушиться. Для предупреждения феррорезонанса в разомкнутую треугольную цепь трех обмоток трансформатора напряжения включают резистор. Заземление выполняют только в одной точке. В контакты разомкнутого треугольника присоединяют приборы, которые следят за токами замыкания не землю.

Приобретение и установка измерительного трансформатора в соответствии с паспортными данными нагрузки и напряжения электроустановки гарантируют бесперебойную и точную работу приборов и оборудования.

голоса
Рейтинг статьи
Ссылка на основную публикацию