Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Крен12а схема включения стабилизатор тока

Каталог радиолюбительских схем

Когда не хочется думать — на помощь приходит микросхема. (Ода КРЕН12).

Евгений Мерзликин. (Дела давно минувших дней.)

Когда не очень хочется думать и выбирать схему стабилизатора на помощь приходит микросхема. Существует много стабилизаторов в интегральном исполнении, но класикой является КР142ЕН12(рис.1). Корпус трехвыводный, классический ТО220. Если нужна комплементарная пара ставим КР142ЕН18. Микросхемы изготавливает НПО «Электроника» г.Воронеж.


Рис. 1.

Единственное ограничение — правильно расчитать мощность, рассеиваемую на микросхеме по формуле

Входное напряжение порядка 38 В (для КРЕН18 чуть ниже). Ток выхода порядка 1 А (Не забывать Pрас макс=10 Вт. ). Куча встроенных защит, в том числе по току и по перегреву.

Принципиальная схема включения очень проста (рис. 2).


Рис. 2.

Резистором R устанавливают выходное напряжение. Его расчитывают исходя из условия — напряжение на резисторе 240 Ом между выходом и управляющим электродом (у КРЕН12 это 8 и 17 соответственно) 2,4 В, а номинал 240 Ом применяем ВСЕГДА(!).

R=(Uвых-2,4 В)/Iделителя=(Uвых-2,4 В)/(2,4 В/240 Ом)=((Uвых-2,4 В)/10) кОм

Если выходного тока в 1 А немного не хватает — можно его удвоить поставив в паралель две микросхеммы, а чтобы не подбирать выходное напряжение второго стабилизатора ставим дополнительный компаратор на операционном усилителе (ОУ), обеспечивающий повторение значения постоянного тока второй КРЕНкой, рис. 3. В качестве ОУ я ставил сдвоенный К157УД2 — просто был под рукой, а в принципе можно любой с соответствующими цепями коррекции для единичного усиления. Хорошие результаты показали К140УД8 и К574УД1.


Рис. 3.

Страивать КРЕНки я пробывал, но лучше применить схему, представленную на рис. 4.


Рис. 4.

Предположим нужен выходной ток 3 А при рабочем токе микросхемы 0,5 А. Резистор R2 берем равным 2 Ом(Pрас=0,5. 1 Вт) . Тогда на нем упадет наряжение UR2=0,5 А*2 Ом=1 В. Напряжение база-эмиттер рабочего транзистора всегда равно порядка 0,7 В. Тогда напряжение на резисторе R1 равно 0,3 В, а номинал резистора R1=0,3 В/3 А=0,1 Ом при мощности рассеивания не менее 1 Вт. В качестве транзистора VT1 можно применить КТ835, КТ837 (изготавливает НПО «Электроника» г.Воронеж). Входное напряжение Eп, выходное Uвых и мощность, рассеиваемая микросхемой КР142ЕН12 Pрас связаны следующей формулой с током через микросхему Iкрен

Еще большие выходные токи можно применить запаралелив выходные транзисторы, рис. 5. Расчетные формулы те же, только номинал резистора R1, расчитанного по рис. 4 надо умножить на количество резисторов R1, R2, R3 и т. д. в схеме по рис. 5.


Рис. 5.

Особую надежность стабилизатора с дополнительным умощняющим транзистором по схеме рис. 4 можно получить введя защиту этого транзистора по току. Хотя у Кренки свои защиты и можно их пересчитать для работы с умощнителем, но проще собрать схему рис. 6.


Рис. 6.

Транзистор VT1 откроется и зашунтирует вход умощняющего транзистора VT2 при напряжегнии на резисторе R1 равным 0,65. 0,7 В. При выходном токе 3 А номинал R1 равен 0,21. 0,23 Ом, а номинал R2 при токе микросхемы равном 0,5 А будет R2=2, 7 Ом, мощность резисторов порядка 1 Вт. Ток защиты соответственно около 3 А.

Иногда, например при зарядке аккумуляторов ситоит стабилизировать ток. Схема стабилизатора тока на КРЕНке представлена на рис. 7.


Рис. 7.

Здесь управляющее напряжение берется с резистора, включенного последовательно с нагрузкой, а так как оно (упр.напряжение постоянно см. выше и равно 2,4 В) при постоянстве резистора будет постоянен и ток

Читайте так же:
Трансформаторы тока стабилизаторы напряжения

Для регулировки тока лучше применитть переключатель с соединенными последовательно резисторами (тогда при переключении диапазона система будет стабилизировать минимальный ток и не будет перегружаться), рис. 8.


Рис. 8.

Есть еще куча применений КРЕНок. Если кому интересно пишите — я продолжу.

Крен12а схема включения стабилизатор тока

  • Главная
  • Радио
  • Схемы
  • Транзисторы
  • Электроника
  • Своими руками

Простое зарядное на КР142ЕН12А | Все своими руками

Это зарядное устройство предназначено, как гласит заголовок, для зарядки герметичных, геллеевых аккумуляторов. Зарядный ток можно регулировать от десятков миллиампер до одного ампера. При указанных на схеме величинах резисторов R1 и R2, напряжение на выходе данного зарядного устройства можно установить от 1,25… до 14 В. Схема устройства приведена на рисунке 1.

Основными элементами схемы являются микросхемы DA1 и DA2 – КР142ЕН12А. На микросхеме DA2 собран стабилизатор зарядного тока, а на микросхеме DA1 собран стабилизатор напряжения, до которого необходимо зарядить аккумулятор. Со стабилизатором напряжения, я, думаю, вам все понятно, это типовая схема включения микросхемного, трехвыводного стабилизатора напряжения КР142ЕН12А.

Вообще, данная микросхема имеет максимально допустимое входное напряжение 36 В, при этом пределы регулировки выходного напряжения находятся в диапазоне от 1,25 … 37 В. Поэтому входное напряжение +Е зависит от выбранного вами выходного напряжения.Ток нагрузки ограничен техническими условиями на уровне 1,5 А. Рассчитать величину резистора R1 для других выходных напряжений можно по формуле 1.

Где U – напряжение на выходе стабилизатора.
Стабилизатор тока нагрузки, выполненный на микросхеме DA2, по моему мнению, является образцом прекрасного решения регулировки тока стабилизации при своей простоте. Максимальный ток стабилизации зависит от величины резистора R3 и рассчитывается по формуле 2.

Минимальный ток стабилизации зависит от величины общего падения напряжения на диодах VD1 и VD2. Вообще цепочка из двух последовательно включенных диодов, является стабилизатором напряжения ввиду малой зависимости величины падения напряжения на диодах от величины протекающего через них тока. Более подробно о работе данной схемы можно прочитать в статье Сергея Скворцова [email protected], опубликованная в журнале «Радиоежегодник». Очень советую ее прочитать, узнаете много интересного.

Скачать “zaryadnoe-ustrojstvo-dlya-gelevyx-akkumulyatorov-na-kr142en12a-1.rar” zaryadnoe-ustrojstvo-dlya-gelevyx-akkumulyatorov-na-kr142en12a-1.rar – Загружено 1263 раза – 40 KB

На этом все. Успехов. К.В.Ю.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Интегральный стабилизатор КР142ЕН12

Микросхемы представляют собой мощные высоковольтные стабилизаторы напряжения “взвешенного” типа с регулируемым выходным напряжением положительной полярности от 1,2 до 37 В и токами нагрузки 1 и 1,5 А. Устойчивы к импульсным перегрузкам мощности, имеют защиту от перегрузок по току. Корпус пластмассовый типа КТ-28-2, масса не более 2 г.

Корпус ИС электрически соединен с выводом 2 “Uвых”. При монтаже ИС необходимо обеспечивать изоляцию корпуса от заземленных элементов и токопроводящих элементов аппаратуры, имеющих потенциал, отличный от Uвых. При всех условиях эксплуатации емкость выходных конденсаторов должна быть не менее 1 мкФ. При наличии сглаживающего фильтра входного напряжения входной емкостью может служить выходная емкость фильтра, если ее значение не менее 1 мкФ для керамических конденсаторов и не менее 10 мкФ для алюминиевых конденсаторов. В остальных случаях входная емкость должна быть не менее 0,1 мкФ. Для максимальной реализации выходных параметров ИС, необходимо осуществлять контактирование резисторного делителя обратной связи и выходного конденсатора как можно ближе к выходу ИС, а саму ИС рекомендуется устанавливать в непосредственной близости к нагрузке.

Читайте так же:
Микросхема для импульсного понижающего стабилизатора тока

При использовании дополнительного радиатора рассеиваемая мощность не должна превышать 10 Вт. При этом температура кристалла должна быть не более 130 °С.

Выходное напряжение определяется из выражения: Uвых = Uвых,min(1 + R2/R1) + R2Jрег, где Jрег = 55 мкА.

Технические характеристики

Электрические параметры

Здесь приводится типовая схема включения регулируемого трехвыводного стабилизатора напряжения на микросхеме LM117, наш полный аналог — КР142ЕН12А.

Максимальное входное напряжение КР142ЕН12А равно сорок пять вольт, минимальное входное — пять вольт. Особенно хорош верхний порог входного напряжения этой микросхемы, есть шансы, что она останется жива при аномальном перенапряжении первичной сети.

Диапазон выходных напряжений от 1,25 до 37 вольт — достойный диапазон. Максимальный выходной ток микросхемы с соответствующим радиатором составляет полтора ампера. Так как я воспитывался в оборонной промышленности, то и все элементы схем стараюсь использовать на 30 максимум на 50% от их предельно-допустимых параметров. Так стабилизатор, собранный по этой схеме с выходным напряжением 13,6 вольт и током нагрузки 400ма работает уже одиннадцать лет. Рассчитать радиатор самому очень сложно, поэтому я их подбираю. Оставляю такой радиатор, при котором температура самой микросхемы не превышала 40-50 градусов при максимальной нагрузке. Во всем должен быть запас. Конденсатор С1 на схеме необходим, если длина провода от конденсаторов фильтра до микросхемы больше восьми сантиметров. R1 может принимать значения от 220 до 270ом и устанавливать его лучше прямо на выводы микросхемы, при этом время пайки должно быть не более трех секунд. Резистор R2 можно оставить подстроечным, Но если вы делаете блок питания под конкретное напряжение, его следует заменить постоянным, сами понимаете — контакт, да еще и скользящий — опасная штука. R2 можно рассчитать по формуле — R2=R1x (Uвых/1,25 — 1). Собираясь делать радиоаппаратуру, не забывайте о том, где она у вас будет работать, или под одеялом дома, или в поле зимой на ветру. От климатических условий зависит и выбор радиокомпонентов по диапазону рабочих температур.
До свидания К.В.Ю.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

КР142ЕН12А

КР142ЕН12А — отечественный регулируемый стабилизатор положительного напряжения 1.2 − 37В с током до 1.5А в трёхвыводном пластмассовом корпусе КТ-28-2. Это стандартный транзисторный корпус, который очень легко можно прикрепить к радиатору или к корпусу радиоаппаратуры, используемому в качестве радиатора.

Схема КР142ЕН12А

Чтобы запустить стабилизатор КР142ЕН12А, достаточно на него «навесить» два резистора в виде резистивного делителя для установки необходимого выходного напряжения. Если стабилизатор находится от фильтрующего конденсатора на расстоянии не более 15 см, то входная ёмкость Vin не нужна. Если более 15 см, то эта ёмкость необходима вблизи корпуса стабилизатора КР142ЕН12А. Для сглаживания пульсаций также можно применить выходную ёмкость Vout. Если же необходим очень высокий уровень подавления пульсаций, можно зашунтировать резистор регулирования ёмкостью Cadj. Схема, где есть только КР142ЕН12А и постоянный резистор между выходом и выводом регулирования, это прецизионный токовый стабилизатор. Напряжение снимается с вывода регулирования. Ток этого стабилизатора считается по формуле I = 1.2/R . Также, КР142ЕН12А можно использовать как источник питания с электронным выключением. Этого достигают закорачиванием вывода регулирования на «землю». При этом на выходе устанавливается напряжение 1.2В.

Схема КР142ЕН12А

Цоколёвка КР142ЕН12А

Характеристики КР142ЕН12А

По сравнению со стандартными фиксированными стабилизаторами, такими как к примеру КР142ЕН5А или КР142ЕН8Б, регулируемый стабилизатор КР142ЕН12А обладает даже лучшей линейностью нагрузочной характеристики. Этот стабилизатор имеет полный набор защит: защита по току и защита от перегрева. Причём, даже если отключить вывод регулирования, все защиты КР142ЕН12А остаются работоспособными.

Читайте так же:
Lm317 как стабилизатор тока расчет

Крен12а схема включения стабилизатор тока

Автор: Сергей
Опубликовано 28.09.2009

Привет, кого не видел.

В этой части, как и обещалось, мы поговорим о еще одном типе стабилизаторов – компенсационном . Как видно из названия (название видно, нет?), принцип действия их основан на компенсации чего то чем то. Чего и чем сейчас узнаем. Для начала, рассмотрим схему простейшего компенсационного стабилизатора. Его схема более сложная, чем обычного параметрического, но совсем чуть-чуть.

Схема состоит из следующих узлов:

  1. Источник опорного напряжения (ИОН) на R 2, D 1, который сам по себе является параметрическим стабилизатором.
  2. Делителя напряжения R3-R5 .
  3. Усилителя постоянного тока (УПТ) на транзисторе VT 1
  4. Регулирующего элемента на транзисторе VT 2.

Работает весь этот зоопарк следующим образом. ИОН выдает опорное напряжение, равное напряжению на выходе стабилизатора на эмиттер VT 1. Напряжение с делителя поступает на базу VT 1. В результате, этому бедолаге приходится решать, что же делать с напряжением на коллекторе – то ли оставить все как есть, то ли увеличить, то ли уменьшить. И чтобы сильно не морочиться, он поступает так – если напряжение на базе меньше опорного (которое на эмиттере), он увеличивает напряжение на коллекторе, открывая сильнее, таким образом, транзистор VT 2 и увеличивая напряжение на выходе, если же напруга на базе больше опорного, то происходит обратный процесс. В результате всей этой возни, напряжение на выходе остается неизменным, то есть стабилизированным, что и требуется. Причем, по сравнению с параметрическими стабилизаторами, коэффициент стабилизации у компенсационных значительно выше. Так же выше и КПД. Резистор R 4 нужен для подстройки в небольших пределах выходного напряжения стабилизатора.

Ну а теперь перейдём к сладкому – к стабилизаторам на микросхемах. Я их называю стабилизаторами для ленивых, поскольку на пайку такого стабилизатора уходит минуты две, если не меньше. Чтобы сильно не тянуть резину, сразу переходим к схеме, хотя схема то…

Итак, перед вами схема, которая до отвращения проста. В ней всего три элемента, причем обязательным является только один – микросхема DA 1. Кстати, сказать, интегральные стабилизаторы по своей сущности являются компенсационными. Нуте-с, что же нам требуется? Только одно – знать напряжение, которое мы хотим получить от стабилизатора. Дальше мы идём в табличку и выбираем себе микросхемку по душе.

Микросхема

Напряжение стабилизации, В

Макс. ток, А

Расс. Мощн., Вт

Потребл. Ток мА

(К)142ЕН5А
(К)142ЕН5Б
(К)142ЕН5В
(К)142ЕН5Г

Стабилизированный регулируемый блок питания с защитой от перегрузок

Множество радиолюбительских блоков питания (БП) выполнено на микросхемах КР142ЕН12, КР142ЕН22А, КР142ЕН24 и т.п. Нижний предел регулировки этих микросхем составляет 1,2. 1,3 В, но иногда необходимо напряжение 0,5. 1 В. Автор предлагает несколько технических решений БП на базе данных микросхем.

Интегральная микросхема (ИМС) КР142ЕН12А (рис.1) представляет собой регулируемый стабилизатор напряжения компенсационного типа в корпусе КТ-28-2, который позволяет питать устройства током до 1,5 А в диапазоне напряжений 1,2. 37 В. Этот интегральный стабилизатор имеет термостабильную защиту по току и защиту выхода от короткого замыкания.


Рис.1. ИМС КР142ЕН12А

На основе ИМС КР142ЕН12А можно построить регулируемый блок питания, схема которого (без трансформатора и диодного моста) показана на рис.2. Выпрямленное входное напряжение подается с диодного моста на конденсатор С1. Транзистор VT2 и микросхема DA1 должны располагаться на радиаторе. Теплоотводящий фланец DA1 электрически соединен с выводом 2, поэтому если DA1 и транзистор VD2 расположены на одном радиаторе, то их нужно изолировать друг от друга. В авторском варианте DA1 установлена на отдельном небольшом радиаторе, который гальванически не связан с радиатором и транзистором VT2.

Читайте так же:
Импульсный стабилизатор тока 220в


Рис.2. Регулируемый БП на ИМС КР142ЕН12А

Мощность, рассеиваемая микросхемой с теплоотводом, не должна превышать 10 Вт. Резисторы R3 и R5 образуют делитель напряжения, входящий в измерительный элемент стабилизатора, и подбираются согласно формуле:
Uвых = Uвых.min ( 1 + R3/R5 ).

На конденсатор С2 и резистор R2 (служит для подбора термостабильной точки VD1) подается стабилизированное отрицательное напряжение -5 В. В авторском варианте напряжение подается от диодного моста КЦ407А и стабилизатора 79L05, питающихся от отдельной обмотки силового трансформатора.

Для защиты от замыкания выходной цепи стабилизатора достаточно подключить параллельно резистору R3 электролитический конденсатор емкостью не менее 10 мкФ, а резистор R5 зашунтировать диодом КД521А. Расположение деталей некритично, но для хорошей температурной стабильности необходимо применить соответствующие типы резисторов. Их надо располагать как можно дальше от источников тепла. Общая стабильность выходного напряжения складывается из многих факторов и обычно не превышает 0,25% после прогрева.

После включения и прогрева устройства минимальное выходное напряжение 0 В устанавливают резистором Rдоб. Резисторы R2 (рис.2) и резистор Rдоб (рис.3) должны быть многооборотными подстроечными из серии СП5.


Рис.3. Схема включения Rдоб

Возможности по току у микросхемы КР142ЕН12А ограничены 1,5 А. В настоящее время в продаже имеются микросхемы с аналогичными параметрами, но рассчитанные на больший ток в нагрузке, например LM350 — на ток 3 A, LM338 — на ток 5 А. Данные по этим микросхемам можно найти на сайте National Semiconductor [1].

В последнее время в продаже появились импортные микросхемы из серии LOW DROP (SD, DV, LT1083/1084/1085). Эти микросхемы могут работать при пониженном напряжении между входом и выходом (до 1. 1,3 В) и обеспечивают на выходе стабилизированное напряжение в диапазоне 1,25. 30 В при токе в нагрузке 7,5/5/3 А соответственно. Ближайший по параметрам отечественный аналог типа КР142ЕН22 имеет максимальный ток стабилизации 7,5 А.

При максимальном выходном токе режим стабилизации гарантируется производителем при напряжении вход-выход не менее 1,5 В. Микросхемы также имеют встроенную защиту от превышения тока в нагрузке допустимой величины и тепловую защиту от перегрева корпуса.

Данные стабилизаторы обеспечивают нестабильность выходного напряжения 0,05%/В, нестабильность выходного напряжения при изменении выходного тока от 10 мА до максимального значения не хуже 0,1 %/В.

На рис.4 показана схема БП для домашней лаборатории, позволяющая обойтись без транзисторов VT1 и VT2, показанных на рис.2. Вместо микросхемы DA1 КР142ЕН12А применена микросхема КР142ЕН22А. Это регулируемый стабилизатор с малым падением напряжения, позволяющий получить в нагрузке ток до 7,5 А.


Рис.4. Регулируемый БП на ИМС КР142ЕН22А

Максимально рассеиваемую мощность на выходе стабилизатора Рmax можно рассчитать по формуле:
Рmax = (Uвх — Uвых) Iвых ,
где Uвх — входное напряжение, подаваемое на микросхему DA3, Uвых — выходное напряжение на нагрузке, Iвых — выходной ток микросхемы.

Например, входное напряжение, подаваемое на микросхему, Uвх=39 В, выходное напряжение на нагрузке Uвых=30 В, ток на нагрузке Iвых=5 А, тогда максимальная рассеиваемая микросхемой мощность на нагрузке составляет 45 Вт.

Читайте так же:
Расчет транзистора в стабилизаторе тока

Электролитический конденсатор С7 применяется для снижения выходного импеданса на высоких частотах, а также понижает уровень напряжения шумов и улучшает сглаживание пульсаций. Если этот конденсатор танталовый, то его номинальная емкость должна быть не менее 22 мкФ, если алюминиевый — не менее 150 мкФ. При необходимости емкость конденсатора С7 можно увеличить.

Если электролитический конденсатор С7 расположен на расстоянии более 155 мм и соединен с БП проводом сечением менее 1 мм, тогда на плате параллельно конденсатору С7, ближе к самой микросхеме, устанавливают дополнительный электролитический конденсатор емкостью не менее 10 мкФ.

Емкость конденсатора фильтра С1 можно определить приближенно, из расчета 2000 мкФ на 1 А выходного тока (при напряжении не менее 50 В). Для снижения температурного дрейфа выходного напряжения резистор R8 должен быть либо проволочный, либо металло-фольгированный с погрешностью не хуже 1 %. Резистор R7 того же типа, что и R8. Если стабилитрона КС113А в наличии нет, можно применить узел, показанный на рис.3. Схемное решение защиты, приведенное в [2], автора вполне устраивает, так как работает безотказно и проверено на практике. Можно использовать любые схемные решения защиты БП, например предложенные в [3]. В авторском варианте при срабатывании реле К1 замыкаются контакты К1.1, закорачивая резистор R7, и напряжение на выходе БП становится равным 0 В.

Печатная плата БП и расположение элементов показаны на рис.5, внешний вид БП — на рис.6. Размеры печатной платы 112×75 мм. Радиатор выбран игольчатый. Микросхема DA3 изолирована от радиатора прокладкой и прикреплена к нему с помощью стальной пружинящей пластины, прижимающей микросхему к радиатору.


Рис.5. Печатная плата БП и расположение элементов

Конденсатор С1 типа К50-24 составлен из двух параллельно соединенных конденсаторов емкостью 4700 мкФх50 В. Можно применить импортный аналог конденсатора типа К50-6 емкостью 10000 мкФх50 В. Конденсатор должен располагаться как можно ближе к плате, а проводники, соединяющие его с платой, должны быть как можно короче. Конденсатор С7 производства Weston емкостью 1000 мкФх50 В. Конденсатор С8 на схеме не показан, но отверстия на печатной плате под него есть. Можно применить конденсатор номиналом 0,01. 0,1 мкФ на напряжение не менее 10. 15 В.


Рис.6. Внешний вид БП

Диоды VD1-VD4 представляют собой импортную диодную микросборку RS602, рассчитанную на максимальный ток 6 А (рис.4). В схеме защиты БП применено реле РЭС10 (паспорт РС4524302). В авторском варианте применен резистор R7 типа СПП-ЗА с разбросом параметров не более 5%. Резистор R8 (рис.4) должен иметь разброс от заданного номинала не более 1 %.

Блок питания обычно настройки не требует и начинает работать сразу после сборки. После прогрева блока резистором R6 (рис.4) или резистором Rдоп (рис.3) выставляют 0 В при номинальной величине R7.

В данной конструкции применен силовой трансформатор марки ОСМ-0,1УЗ мощностью 100 Вт. Магнитопровод ШЛ25/40-25. Первичная обмотка содержит 734 витка провода ПЭВ 0,6 мм, обмотка II — 90 витков провода ПЭВ 1,6 мм, обмотка III — 46 витков провода ПЭВ 0,4 мм с отводом от середины.

Диодную сборку RS602 можно заменить диодами, рассчитанными на ток не менее 10 А, например, КД203А, В, Д или КД210 А-Г (если не размещать диоды отдельно, придется переделать печатную плату). В качестве транзистора VT1 можно применить транзистор КТ361Г.

голоса
Рейтинг статьи
Ссылка на основную публикацию