Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Мощность тепловыделения при протекании тока

Мощность тепловыделения при протекании тока

Закон теплового действия тока Джоуля–Ленца.

Методы: количественное исследование.

Прямота эксперимента: прямое наблюдение.

Искусственность изучаемых условий: естественные условия.

Исследуемые фундаментальные принципы: закон сохранения и превращения энергии, дрейфовый характер тока в металлах.

Закон Джоуля–Ленца был независимо открыт английским физиком Джеймсом Прексоттом Джоулем (1818–1889; портрет слева) и его русским коллегой Эмилием Христиановичем Ленцем (1804–1865, портрет справа). Сам закон, носящий имена этих двух ученых, утверждает, что протекание тока с плотностью в проводнике с проводимостью сопровождается выделением в его объеме тепла в количестве

в единицу времени. Для линейных проводников он принимает более известную из школы форму: ток , протекающий через активное сопротивление , приводит к выделению в нем в единицу времени тепла в количестве

Открытие закона Джоуля–Ленца явилось важной ступенью на пути к открытию и последующему утверждению закона сохранения энергии, более того, сам Джоуль считается одним из автором последнего. Сегодня может показаться очевидным, что энергия есть некая универсальная характеристика любой замкнутой системы и что теплота, электричество, механическое движение и др. являются формами материи, с вполне определенным количеством энергии, содержащейся в них. Однако во времена, когда кинетическая природа теплоты была совсем неочевидной, установление эквивалента электрической, механической и тепловой энергии было крайне важным. Эквивалентность двух последних ее видов была получена в другом опыте Джоуля, который помещен в раздел «Молекулярная и статистическая физика». Как следствие, Джоуль нашел переводной коэффициент между единицами теплоты (калориями) и механической энергии (впоследствии джоулями).

В эксперименте, поставленном Джоулем (1841, 1843) и независимо от него Ленцем (1843), использовался калориметр (см. рис. справа), т.е. теплоизолированный прибор с большой, но известной теплоемкостью и термометром, в который был помещен проводник с известным сопротивлением. При подключении этого проводника к источнику напряжения в нем начинало выделяться тепло, количество которого можно было определить по изменению температуры внутри калориметра. Ленц подтвердил закон теплового действия тока с гораздо большей, чем Джоуль, точностью, однако последний также показал его справедливость для тока в электролитах. Вообще говоря, класс веществ, в которых действует закон Джоуля–Ленца, очень широк и включает в себя полупроводники, электролиты и металлы. Неприменим он к движущимся проводникам и к проводникам, которые приходят в движение при протекании в них тока — т.н. проводникам второго рода (например, катушка индуктивности внутри электромотора).

Джоулю наблюдаемый им процесс выделения тепла был интересен и с точки зрения закона сохранения энергии. Поэтому, чтобы можно было оценить ушедшую в тепло энергию, он использовал в качестве источника энергии падающий груз на нити, вращавшей ротор динамо-машины (см. электромагнитная индукция). В данном случае эта энергия равна просто изменению механической энергии груза в поле тяготения.

Закон Джоуля–Ленца также бросает свет на теорию тока в металлах. Действительно, к такому выводу практически непосредственно приводит теория, в которой ток переносится свободными зарядами — электронами — которые дрейфуя сквозь кристаллическую решетку, отдают ей часть энергии своего упорядоченного движения. Эта энергия переходит в энергию хаотического движения ионов кристаллической решетки, что соответствует нагреванию проводника.

Наконец, установленный закон в форме, выражающей мощность тепловыделения через напряжение на участке цепи ,

имеет простой механический смысл: электрическое поле внутри проводника, создающее ток, совершает над носителями заряда работу, и она полностью переходит в тепло. Действительно, в механике мощность силы , действующей на частицу со скоростью , равна , поэтому в случае проводника с линейной плотностью свободных зарядов и полем , поддерживающим ток работа по перемещению зарядов в единицу времени равна

причем интегрирование ведется вдоль проводника. Считая, что ток квазистационарный, и плотность свободных зарядов не зависит от точки проводника, а также помня, что электрическое поле и скорость дрейфа направлены вдоль проводника, мы можем представить выражение для мощности как произведение тока и напряжения на участке цепи . Таким образом мы заключаем, что в проводнике вся работа, совершаемая электродвижущей силой над зарядами, переходит в тепло. С точки зрения механики это означает, что очень велико трение свободных электронов о кристаллическую решетку — иначе они должны были начать двигаться равноускоренно.

Об этом трении также свидетельствует быстрое затухание инерционного тока в опытах Толмена–Стюарта и Мандельштама–Папалекси, проведенных в начале XX века. Об этих опытах вы можете прочесть в соответствующем разделе.

Допустимый ток для медных проводов

Медные проводники получили преимущественное распространение в электрических сетях, электро,- и радиотехнике. Это обусловлено наилучшим соотношением характеристик данного металла:

  • Низкое удельное сопротивление;
  • Низкая стоимость;
  • Высокая механическая прочность;
  • Пластичность и гибкость;
  • Высокая коррозионная стойкость.

В некоторых случаях в качестве металла для проводников и кабелей используется алюминий, но, по большей части, это вызвано лишь стремлением снизить стоимость и массу, поскольку алюминий имеет меньший удельный вес и стоимость, но несравнимо худшие механические и химические свойства. Алюминиевые провода плохо поддаются пайке, поэтому при производстве продукции радио,- и электротехнического назначения, силовых кабелей преимущество имеет медь. Еще одно преимущество меди состоит в том, что она имеет большие допустимые токовые нагрузки из-за низкого удельного сопротивления и большей температуры плавления.

Читайте так же:
В чем измеряется количество теплоты выделяемое током единица

Определение допустимого тока

Имеется несколько критериев выбора максимального тока через проводники:

  • Тепловой нагрев;
  • Падение напряжения.

Данные параметры являются взаимосвязанными, и увеличение сечения проводников с целью уменьшения падения напряжения снижает и нагрев. В любой ситуации длительно допустимый ток подразумевает отсутствие критического нагрева, который может привести к деградации изоляции, изменению параметров как самого провода, так и близко расположенных элементов.

Тепловой нагрев

Величина тока связана с нагревом в соответствии с законом Джоуля-Ленца, названного так по именам первооткрывателей зависимости:

  • Q – количество теплоты, которое выделяется на проводнике;
  • R – сопротивление проводника;
  • I – ток, протекающий через проводник;
  • t – промежуток времени, в течение которого производится подсчет тепловыделения.

Из формулы следует, что чем больше сопротивление проводника, тем большее количество теплоты выделится на нем. На этом принципе построены нагревательные приборы с высокоомным нагревательным элементом. Нагреватель выполнен из провода, который, кроме высокого удельного сопротивления, имеет высокую температурную устойчивость (как правило, нихром). Температура меди намного ниже, поэтому существуют определенные условия, при которых нагрев медного проводника не будет выходить за допустимые пределы.

Падение напряжения

Для того чтобы представить влияние тока на падение напряжения, необходимо вспомнить закон Ома:

Согласно закону Ома, при протекании тока через проводник с сопротивлением R на нем образуется падение напряжения:

Таким образом, при постоянном сопротивлении нагрузки R, чем больше ток в питающей сети, тем больше будет падение напряжения на сопротивлении r, питающих проводов (U=I·r).

Именно напряжение потерь вызывает ненужный нагрев проводов, но главная проблема в том, что напряжение нагрузки становится меньше на эту величину. Пояснить это можно на простом примере. Пускай в домашней электропроводке имеется участок длиной 100 м, выполненный медным проводом сечением 2.5 мм2. Сопротивление такого участка составит около 0.7 Ом. При токе нагрузки 10А, а это потребляемая мощность чуть больше 2 кВт, падение напряжения на проводе составит 7 В. При однофазном питании используется два провода, поэтому суммарное падение составит 14 В. Это довольно значительная величина, поскольку напряжение на потребителях будет составлять уже не 220, а 206В.

К определению падения напряжения в кабеле

На самом деле этот пример не совсем точен, поскольку уменьшение напряжения на активной нагрузке приведет к снижению мощности, следовательно, к снижению потребляемого тока. Но целью данной статьи не является замена учебника электротехники, поэтому данное объяснение вполне правдоподобно. Таблица, приведенная ниже, показывает соотношение падения напряжения при различных значениях тока на 1 м провода для наиболее распространенных сечений.

Зависимость падения напряжения от сечения и величины протекающего тока

При расчетах однофазной электропроводки по допустимому падению напряжения при предполагаемом токе нагрузки данные таблицы следует удваивать (используется два проводника: ноль и фаза). Не всегда в таблице будет присутствовать нужное сечение проводника, поэтому следует выбирать ближайшее большее значение. Это хорошо еще и тем, что учитывается возможное повышение мощности потребителей. Сильно большое сечение, взятое с запасом, приведет к неоправданному удорожанию материалов.

Допустимая плотность тока

Для упрощения расчетов и подбора требуемого провода принята такая величина, как плотность тока для меди и иных материалов. Плотность тока выражается в амперах на один квадратный миллиметр сечения.

Важно! Допустимая плотность тока определяется для площади сечения, а не диаметра провода. При маркировке монтажного провода обычно используется сечение, а обмоточного – диаметр. Для перевода диаметра провода в сечение нужно воспользоваться формулой S=π·d2/4 или определить его по таблице, взяв равное или ближайшее меньшее значение имеющегося диаметра.

Сечение популярного обмоточного провода ПЭВ-2

Сечение провода ПЭВ-2

Выбирая сечение провода, нужно знать, что допустимый ток для медных проводов во многом зависит от условий охлаждения. Наличие свободного доступа воздуха улучшает охлаждение нагретых проводов, поэтому в самых неблагоприятных условиях находятся внутренние обмотки трансформаторов напряжения, электропроводка, смонтированная в штробах стен. Большое влияние на теплоотдачу имеет материал и толщина внешней изоляции силовых кабелей.

Расчетным путем установлены и подтверждены на практике допустимые значения плотности тока для медного провода, применяемого в обмотках электрических машин и электрической проводки, которые сведены в таблицу ниже.

Допустимые значения плотности тока на 1 мм² в медном проводе

Трансформаторы и электрические машиныЭлектропроводка
Внутренние обмоткиНаружные обмоткиСкрытаяНаружная
2-3 А3-5 А4 А5 А

Обратите внимание! Таблица дает только ориентировочные данные для предварительных расчетов. Более точные показатели допустимых значений для кабелей разных типов и условий эксплуатации приведены в нормативной документации, в частности в ПУЭ.

Нормативные значения сечения кабеля

Пути повышения допустимого тока

Для снижения стоимости конструкций, в которых используются медные провода и кабели или шнуры, уменьшения массы, существует несколько путей повышения допустимых значений тока:

  • Улучшение охлаждения за счет обдува или конвективных потоков;
  • Отвод тепла при помощи теплоотводов или радиаторов;
  • Ограничение максимальных токовых нагрузок по времени.

Грамотно выполненная конфигурация обмоток и расположение трансформатора способны эффективно отводить тепло, которое выделяется при прохождении тока. Для мощных силовых трансформаторов, а это сварочные аппараты, трансформаторы подстанций, выполняется специальная обмотка с воздушными промежутками. Попадая в промежуток между отдельными частями обмоток, воздух отбирает часть тепла и выносит его наружу.

Те же цели преследует обдув нагревающихся частей машин при помощи вентиляторов. К такому решению часто обращаются производители микроволновых печей, устанавливая кулер на мощный высоковольтный трансформатор.

Обмотка с зазорами

Мощные трансформаторы силовых подстанций охлаждают обмотки при помощи трансформаторного масла, в которое погружен весь трансформатор. Обмотки выполняются с промежутками, в которых циркулирует масло.

Масло охлаждается при помощи трубчатого радиатора, который находится на боковых сторонах корпуса трансформатора. Вся конструкция выполнена полностью герметичной, поэтому для компенсации температурного расширения масла имеется расширительный бак.

Кратковременные токовые нагрузки не успевают в достаточной мере прогреть всю обмотку, поэтому для кратковременно работающего оборудования можно принимать плотность тока по сечению провода вплоть до 7-10А на мм2.

Оборудование, которое эксплуатируется на максимально допустимых плотностях тока, должно чередовать работу под нагрузкой с перерывом на охлаждение.

Важно! Теплопроводность меди и теплоемкость железного сердечника машин переменного тока высоки. Проходящие токи нагрузки прогревают весь объем обмоток одновременно, а охлаждение происходит только с поверхности, поэтому периоды отдыха должны превышать время работы под нагрузкой в несколько раз для достаточного охлаждения не только наружных, но и внутренних частей оборудования.

Последствия превышения тока

Чрезмерно высокий ток в медных проводах способен разогреть материал вплоть до температуры плавления. Разумеется, что подобная ситуация приведет к аварии или неработоспособности оборудования, но в некоторых случаях это является полезным.

Речь идет о плавких предохранителях. Основу их устройства составляет тонкая металлическая проволока, заключенная в огнеупорный изоляционный корпус. Толщина проволоки подобрана таким образом, чтобы ток определенной величины вызывал нагрев и перегорание проводника предохранителя. Наиболее часто используются плавкие вставки из цинка или меди.

Самое главное требование к плавкой вставке – строгое соответствие состава металла и его равномерный диаметр проводника по всей длине. Состав важен для стабильности температуры плавления. Наличие неравномерности по длине провода может вызвать локальный перегрев в месте сужения и перегорание предохранителя при токе, меньше номинального. Исходя из этих условий, провод для предохранителей выпускается с повышенным контролем и называется калиброванным.

Выполнение изложенных требований по допустимому току в проводниках позволяет продлить срок нормальной эксплуатации конструкций и электрооборудования, свести к минимуму риск возникновения поломок и аварий.

Видео

Меры пожарной безопасности при эксплуатации электрооборудования

Требованиями пожарной безопасности установлены определённые правила при устройстве и эксплуатации электротехнических и теплогенерирующих устройств, соблюдение которых позволит максимально обезопасить себя от риска возникновения пожара.

Статистика показывает, что доля пожаров по причине нарушения правил устройства и эксплуатации электрооборудования на территории Свердловской области составляет 32 % от общего их количества.

Таким образом, опасность возникновения пожара от электрического тока обусловлена тепловой природой его проявления и горючестью электроизоляционных и других материалов.

По данным статистики основными причинами пожаров от электрического тока являются:

— большие переходные сопротивления;

— несоблюдение безопасного расстояния от электроустановок до горючих материалов.

При этом наиболее опасным видом электротехнических изделий являются электропроводки, на долю которых приходится до 45% пожаров в электроустановках.

Короткое замыкание представляет замыкание между проводниками или проводом и землей. В результате снижения сопротивления цепи протекания тока его сила многократно возрастает и в значительной степени превышает допустимые пределы.

При этом происходит выделение большого количества теплоты, что вызывает воспламенение изоляции, расплавление материала проводника с выбросом искр. Так температура плавления алюминия 660°С, меди — 1085°С. Основными причинами возникновения коротких замыканий являются нарушение изоляции в электрических проводах, кабелях и электроприемниках из-за ее старения или механического повреждения и возникновение перенапряжений. Кроме того, замыкание может произойти вследствие попадания в электрооборудование токопроводящих предметов, деформации его элементов или обрыва проводов, прямых ударов молний, влияния неблагоприятных условий окружающей среды (сырость, химическая активность и т. д.).

Перегрузка электросети заключается в протекании по электрическим проводам и устройствам токов, превышающих допустимые значения. Результат – повышенное тепловыделение, что может привести к пожару. Например, температура воспламенения электроизоляционных материалов из резины 220°С, полиэтилена — 306°С, поливинилхлорида — 560°С. Кроме того, перегрузка электросети может привести к разрушению изоляции проводов и кабелей и ухудшению ее диэлектрических свойств, что снижает срок их службы, способствует появлению и возрастанию токов утечки. В результате данный процесс может закончиться коротким замыканием. Причинами перегрузки электросети могут быть несоответствие сечения проводов и кабелей потребляемой мощности, неправильный выбор аппаратов защиты или их отказ, возникновение токов утечки.

Природа искрений состоит в прохождении тока через воздух. Причиной искрений являются плохие контакты в электрических цепях, в том числе в соединениях проводов и кабелей и их присоединениях к элек-троустановочным изделиям, в местах подключения в сеть различных потребителей электрической энергии. На практике искрения проявляются в виде нагрева штепсельных разъемов, плавления корпусов электрических розеток, потрескиваний в соединениях и т. д.

Переходным сопротивлением называется сопротивление, возникающее в местах перехода тока с одного проводника на другой. Переходные сопротивления образуются в местах соединения проводников между собой или в местах присоединения проводников к машинам, аппаратам, приборам. Большие переходные сопротивления возникают в местах плохих контактов за счет слабого сжатия, окисления контактных поверхностей, малой поверхности контакта. В местах возникновения больших переходных сопротивлений возникает локальный нагрев, что может приводить к воспламенению изоляции, сгораемых элементов конструкций и т. д. Опасность больших переходных сопротивлений усугубляется тем, что аппараты защиты не срабатывают, а места возникновения большого переходного сопротивления контролировать весьма сложно.

Явление перенапряжения в основном связано с обрывом общих питающих нулевых проводников, в результате чего в электросети жилых домов, квартир, учреждений напряжение вместо 220 В может возрасти до В.

В результате воздействия молний в Российской Федерации ежегодно происходит более тысячи пожаров. Молния наряду с термическими и электромагнитными действиями может «занести» высокий потенциал по вводимым в объект коммуникациям, в том числе проводам и кабелям, что может привести к возгоранию электрооборудования и электропроводки.

Несоблюдение безопасных расстояний от электроустановок до горючих материалов может привести к их возгоранию. Так в случае длительного нагрева воспламенение деревянных конструкций возможно при температуре 130 °С.

На основе анализа причин возникновения пожаров от действия электрического тока и требований нормативных документов представляется целесообразным при проектировании акцентировать внимание на следующих мероприятиях:

• выполнение требований по сертификации продукции в области пожарной безопасности;

• выбор видов электропроводок и способов прокладки проводов и кабелей по условиям пожарной безопасности;

• расчет минимальных сечений проводников;

• выбор электрооборудования с учетом взрывопожарной и пожарной опасности объектов, а также других условий окружающей среды (влажность, температура и т. д.), рациональное его размещение;

• защита электрических сетей от коротких замыканий, перегрузки, токов утечки;

Так же следует соблюдать требования проекта, качественно выполнять монтаж электроустановочных изделий, электропроводки, заполнять места прохода проводов и кабелей через стены и перегородки огнезащитными составами с установленными пределами огнестойкости.

При эксплуатации электрических приборов запрещается:

• использовать приемники электрической энергии (электроприборы) в условиях, не соответствующих требованиям инструкций предприятий – изготовителей, или имеющие неисправности, а также эксплуатировать электропровода и кабели с поврежденной или потерявшей защитные свойства изоляцией;

• устанавливать самодельные вставки «жучки» при перегорании плавкой вставки предохранителей, это приводит к перегреву всей электропроводки, короткому замыканию и возникновению пожара;

• окрашивать краской или заклеивать открытую электропроводку обоями;

• пользоваться повреждёнными выключателями, розетками и патронами;

• закрывать электрические лампочки абажурами из горючих материалов.

• использование электронагревательных приборов при отсутствии или неисправности терморегуляторов, предусмотренных конструкцией.

Недопустимо включение нескольких электрических приборов большой мощности в одну розетку, во избежание перегрузок, большого переходного сопротивления и перегрева электропроводки.

Частой причиной пожара является воспламенение горючих материалов, находящихся вблизи от включенных и оставленных без присмотра электронагревательных приборов (электрические плиты, кипятильники, камины, утюги, грелки и т. д.).

Включенные электронагревательные приборы должны быть установлены на негорючие теплоизоляционные подставки.

Для предупреждения высыхания и повреждения изоляции проводов запрещается прокладка их по нагревающимся поверхностям (печи, дымоходы, батареи отопления и т. д.).

Перед уходом из дома на длительное время, нужно проверить и убедиться, что все электронагревательные и осветительные приборы отключены.

СПОСОБ СТАБИЛИЗАЦИИ ТЕПЛОВЫДЕЛЕНИЯ ПРИ КОНТАКТНОЙ ТОЧЕЧНОЙ СВАРКЕ

Изобретение может быть использовано для автоматического контроля и управления машинами контактной сварки. Перед началом сварки определяют напряжение питающей сети Uc, коэффициент трансформации на данной ступени Kт, индуктивное сопротивление Х контактной сварочной машины и угол φк отставания тока от напряжения при полнофазном включении в режиме короткого замыкания. В каждом периоде сварочного тока определяют коэффициент мощности cosφ, величину тепловыделения q на участке «электрод-электрод» и выбирают угол открытия тиристоров α’ в следующем периоде. С учетом полученных данных определяют тепловыделение q за текущий период по заданной формуле. Требуемую величину тепловыделения q’ в следующем периоде задают за счет коррекции угла α’ открытия тиристоров из условия равенства суммарного тепловыделения за заданное количество nсв периодов сварочного тока заданному тепловыделению Q с учетом количества j прошедших периодов тока. Способ обеспечивает повышение качества контактной точечной сварки за счет стабилизации выделяемой энергии на участке «электрод-электрод». 4 ил.

Способ стабилизации тепловыделения при контактной точечной сварке, предусматривающий в каждом периоде сварочного тока определение коэффициента мощности cosφ, величины тепловыделения q на участке «электрод-электрод» и выбор угла открытия тиристоров α’ в следующем периоде, отличающийся тем, что перед началом сварки определяют напряжение питающей сети Uc, коэффициент трансформации на данной ступени Kт, индуктивное сопротивление Х контактной сварочной машины и угол φк отставания тока от напряжения при полнофазном включении в режиме короткого замыкания, при этом тепловыделение q за текущий период определяют как

где Ki(cosφ, α) — коэффициент регулирования сварочного тока, который определяют в зависимости от коэффициента мощности cosφ и угла α открытия сварочных тиристоров по формуле
Ki=a1·α+a,
где а и a1 — коэффициенты, определяемые эмпирически в зависимости от величины cosφ, а требуемую величину тепловыделения q’ в следующем периоде задают за счет коррекции угла α’ открытия тиристоров из условия равенства суммарного тепловыделения за заданное количество nсв периодов сварочного тока заданному тепловыделению Q с учетом количества j прошедших периодов тока:

Изобретение относится к области контактной сварки и может быть использовано для автоматического контроля и управления машинами контактной точечной сварки.

Нормальное протекание процесса формирования ядра сварной точки и стабильное качество точечного сварного соединения обеспечивается при условии вложения необходимого количества тепла в зону сварки (участок «электрод-электрод»). Воздействие же различных возмущений (колебание напряжения сети, состояние поверхности свариваемых деталей, износ сварочных электродов и т.д.) приводит к отклонению реального тепловыделения от заданного, что является причиной возникновения дефектов сварки.

Известен способ регулирования процесса электронагрева, при котором измеряют и суммируют электрическую энергию, выделяемую в сварочном контакте с начала подачи сварочного тока до текущего момента, и отключают сварочный ток при достижении электрической энергии заданного значения [Авторское свидетельство СССР №285737, кл. В23К 11/24, 1973].

Этот способ позволяет поддерживать постоянство выделяемой энергии на участке «электрод-электрод» и компенсировать большинство возмущений, действующих на процесс сварки, однако увеличение длительности цикла сварки приводит к сдвигу теплового баланса в сторону увеличения оттока тепла в сварочные электроды и основной металл, что влечет за собой снижение стабильности качества.

Известен способ регулирования процесса электронагрева при точечной и шовной сварке, при котором измеряют электрическую энергию, выделяемую в сварочном контакте с момента подачи сварочного тока до текущего момента времени, и производят отключение тока при достижении энергии заданного значения, определяемого в зависимости от суммы сигналов, пропорциональных времени протекания сварочного тока и сопротивлению участка «электрод-электрод» [Авторское свидетельство СССР №662297, кл. В23К 11/24, 1979].

Этот способ позволяет повысить точность регулирования электронагрева и стабильность качества сварных соединений при изменении условий теплоотдачи в электроды и основной металл, однако он требует измерения тока и напряжения в процессе сварки, что значительно усложняет систему управления и сопровождается значительными измерительными погрешностями вследствие электромагнитных помех.

Наиболее близким к изобретению по техническому решению является способ автоматического регулирования тепловыделения при контактной точечной сварке, предусматривающий в каждом периоде сварочного тока определение коэффициента мощности cosφ и значения величины тепловыделения на участке «электрод-электрод» qi и в случае отклонения этого значения от заданного тепловыделения q принятие решения на корректировку угла аi+1 открытия тиристоров в следующем периоде, при этом угол αi+1 определяют по формуле , где а и а1 — коэффициенты, определяемые эмпирически исходя из величины cosφ; αi — угол открытия тиристоров в текущем периоде [Патент РФ №2311273, кл. В23К 11/24, 2007].

Этот способ не требует измерения тока и напряжения при сварке и позволяет простыми средствами стабилизировать в условиях действия различных возмущений количество энергии, выделяемой в сварочном промежутке за период, однако не позволяет контролировать суммарное количество энергии, выделяющейся в промежутке «электрод-электрод» в течение всего цикла сварки.

Задача, на решение которой направлено заявляемое изобретение, заключается в повышении качества контактной точечной сварки за счет стабилизации выделяемой энергии на участке «электрод-электрод».

Поставленная задача решается тем, что в способе стабилизации тепловыделения при контактной точечной сварке, предусматривающем в каждом периоде сварочного тока определение коэффициента мощности cosφ, величины тепловыделения q за период сварочного тока на участке «электрод-электрод» и выбор угла включения тиристоров α’ в следующем периоде, перед началом сварки определяются напряжение питающей сети Uc, коэффициент трансформации на данной ступени Кт, индуктивное сопротивление Х контактной сварочной машины и угол φк отставания тока от напряжения при полнофазном включении в режиме короткого замыкания, в процессе сварки тепловыделение q за текущий период определяют как

где Ki(cosφ, α) — коэффициент регулирования сварочного тока, определяемый в зависимости от коэффициента мощности cosφ и угла α открытия сварочных тиристоров по формуле

где a и а1 — коэффициенты, определяемые эмпирически в зависимости от величины cosφ,

а требуемую величину тепловыделения q’ в следующем периоде задают за счет коррекции угла α’ открытия тиристоров из условия равенства суммарного тепловыделения за заданное количество nсв периодов сварочного тока заданному тепловыделению Q с учетом количества j прошедших периодов тока в соответствии с формулой:

Определение в каждом периоде коэффициента мощности cosφ позволяет производить параметрическое измерение основных электрических параметров цепи (сопротивление участка «электрод-электрод» rээ, ток сварки Iсв, тепловыделение q):

Подставив в формулу (7) значения Iсв и rээ, выраженные из формул (2), (4), (5) и (6), получим формулу (1), вычисление тепловыделения по которой позволяет с достаточной точностью определять тепловыделение на участке «электрод-электрод» в зависимости от измеренного значения cosφ и заданного α и отказаться от измерения тока и напряжения при сварке. При этом значения коэффициентов а и а1 в формуле (2) могут быть определены в зависимости от величины cosφ по известным методикам с применением эмпирических формул [Патент РФ №2311273, кл. В23К 11/24, 2007].

Определение пред началом сварки величины напряжения питающей сети Uc, коэффициента трансформации на данной ступени Kт, индуктивного сопротивления Х контактной сварочной машины и угла φк отставания тока от напряжения при полнофазном включении в режиме короткого замыкания позволяет преобразовать формулу (1) к параметрическому виду

может быть задана таблично для фиксированных значений cosφ и α.

Задание требуемой величины тепловыделения q’ в следующем периоде в соответствии с формулой (3) позволяет учесть при расчетах колебания сетевого напряжения и обеспечить вложение в сварную точку заданного количества тепла Q в течение заданного количества nсв периодов сварочного тока, при этом учитывается энергия, накопленная в сварной точке за прошедшие j периодов, а недовложенное количество энергии равномерно распределяется между оставшимися (nсв-j) периодами. С учетом (9) и (10) формула (3) может быть преобразована как

где р’ — требуемое значение функции р в следующем периоде тока.

Определение угла α’ в соответствии с формулой (4) является решением уравнения (1) относительно α для q=q’ и позволяет выразить α’ через cosφ и q’, что с учетом (9), (10) и (11) позволяет преобразовать (4) и получить функцию:

которая может быть задана таблично для фиксированных значений cosφ и p’.

Вычисление в каждом периоде сварочного тока тепловыделения на участке «электрод-электрод» и для каждого последующего периода задание величины этого тепловыделения таким образом, чтобы суммарное тепловыделение за цикл сварки было равно заданному, изменение угла открытия тиристоров по предложенным формулам позволяют стабилизировать выделяемую при сварке энергию за цикл сварочного тока заданной длительности. При этом отпадает необходимость измерения сварочного тока и падения напряжения на электродах.

Изобретение иллюстрируется чертежами, на которых представлены:

на фиг.1 — функциональная схема регулирования тепловыделения при контактной точечной сварке;

на фиг.2 — функции p(cosφ, α) и g(cosφ, р’) при различных значениях коэффициента мощности cosφ для машины МТПУ-300: a) p(cosφ, α) и б) g(cosφ, р’);

на фиг.3 — график изменения значений величины rээ сопротивления в промежутке электрод-электрод в течение сварочного цикла на примере контактной точечной сварки низкоуглеродистой стали 08кп толщиной 1+1 мм;

на фиг.4 — изменения расчетных значений величины тепловыделения в течение цикла сварочного тока в том же примере.

Способ реализуется на стандартных машинах контактной сварки, работающих от сети переменного тока промышленной частоты и содержащих (фиг.1) тиристорный контактор КТ, обеспечивающий включение в сеть сварочного трансформатора ТС. В микропроцессорный блок управления 1 через интерфейс пользователя 2 задаются параметры сварочной машины: коэффициент трансформации Кт, угол φк отставания тока от напряжения при полнофазном включении в режиме короткого замыкания и индуктивное сопротивление Х контактной сварочной машины в режиме короткого замыкания, а также параметры режима сварки: общее тепловыделение за цикл сварки Q и количество периодов сварочного тока nсв. Через программатор 3 в микропроцессорный блок управления закладываются параметрические функции p(cosφ, α) и g(cosφ, р’). Информация о напряжении сети Uc поступает в микропроцессорный блок управления через блоки измерения напряжения 4. Определение коэффициента мощности cosφ производится в блоке 5.

В микропроцессорном блоке управления для каждого периода сварочного тока производятся последовательные вычисления на основании полученного значения cosφ:

1) определение значения функции p в соответствии с формулой (10);

2) вычисление требуемого значения функции p’ в следующем периоде тока в соответствии с формулой (11);

3) определение угла α’, при котором возможно получение требуемого p’ в соответствии с формулой (12).

Пример. При сварке на контактной сварочной машине типа МТПУ-300 на основании проведенных измерений были введены в регулятор следующие значения: индуктивное сопротивление в режиме короткого замыкания Х=240 мкОм, коэффициент трансформации на V ступени Кт=100, угол отставания тока от напряжения при полнофазном включении в режиме короткого замыкания φк=60 электрических градусов, сетевое напряжение Uc=380 В. Для случая сварки листовых заготовок из низкоуглеродистой стали толщиной 1+1 мм в качестве параметров режима приняли время сварки tсв=0,12 с (nсв=6 периодов) и общее тепловыделение Q=1200 Дж.

На основе вычисления по формулам (10) и (12) для φк=60 электрических градусов в регулятор были введены заданные таблично функции p(cosφ, α) и g(cosφ, p’), представленные на фиг.2 в виде номограмм.

Изменение сопротивления rээ промежутка электрод-электрод (фиг.3) в процессе сварки при номинальном диаметре рабочей поверхности электродов, равном 5 мм, и увеличенном вследствие износа диаметре, равном 8 мм, представлено соответственно кривыми 1 и 2. При этом стабилизация тепловыделения Q за цикл сварки (фиг.3) с использованием предлагаемого способа (кривые 1 и 2) позволяет получить качественные соединения в обоих случаях. В то же время сварка со стабилизацией сварочного тока (кривые 1′ и 2′) сопровождается уменьшением тепловыделения при изношенных электродах.

После завершения процесса сварки визуальный осмотр образцов показал отсутствие следов выплесков. Разрушение образцов показало образование требуемой в соответствии с ГОСТ 15878-79 зоны взаимного расплавления деталей на всех образцах независимо от качества подготовки поверхности свариваемых деталей и износа сварочных электродов для образцов, сваренных с применением предлагаемого способа. А на образцах, сваренных со стабилизацией сварочного тока изношенными электродами, формирование точечного сварного соединения произошло с образованием непровара.

Таким образом, предложенный способ автоматического измерения и регулирования тепловыделения при контактной точечной сварке позволяет стабилизировать количество тепла, выделяемого в сварочном промежутке, избегать непроваров и выплесков и получать качественные точечно-сварные соединения независимо от подготовки поверхности свариваемых деталей, износа рабочей поверхности сварочных электродов и колебания напряжения питающей сети.

голоса
Рейтинг статьи
Ссылка на основную публикацию