Schetchiksg.ru

Счетчик СГ
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Операционный усилитель для стабилизатора тока

Источники питания

Устройства, собранные на полупроводниковых приборах (транзисторы, тринисторы, микросхемы) и электромагнитных реле, питаются от источников постоянного напряжения. Как правило, отклонения напряжения от номинального значения не должны выходить за границы определенных допусков (например, для микросхем серии К155 питающее напряжение должно составлять 5В±5%). Поэтому источник питания устройств кроме трансформатора и выпрямителя должен содержать еще и стабилизатор напряжения.

Основой стабилизатора напряжения чаще всего служит кремниевый стабилитрон, включенный в обратном направлении (катодом к положительному полюсу источника питания, анодом — к отрицательному). При таком включении напряжение на стабилитроне (напряжение стабилизации Ucт) мало зависит от тока через стабилитрон (тока стабилизации 1ст). Эти две величины и являются основными параметрами стабилитронов. Так, для стабилитрона КС156А напряжение стабилизации (номинальное) составляет 5,6 В (при номинальном токе стабилизации 10 мА), а ток стабилизации может быть в пределах 3. 50 мА. Если нагрузка потребляет больший ток, применяют усилитель тока. В простейшем случае это может быть транзистор, включенный по схеме с общим коллектором (эмиттерный повторитель).

Схема такого источника питания показана на рис. 101. Напряжение сети, пониженное трансформатором Т1 до 8. 10 В, выпрямляется диодным мостом VD1 и подается на стабилизатор напряжения, в котором транзистор VT1 включен эмиттерным

повторителем. Напряжение на выходе стабилизатора на 0,5. 1 В меньше напряжения на стабилитроне VD2. По аналогичной схеме можно строить стабилизаторы и на другие значения питающих напряжений, следует лишь для каждого случая подобрать соответствующие стабилитрон и сопротивление резистора R1. Максимальный выходной ток стабилизатора Iвыхmах зависит от используемого стабилитрона и статического коэффициента передачи тока транзистора h21э и может быть найден по формуле

Iвых max=h21эIст max.

Стабилизатор напряжения, собранный по схеме на рис. 101, обладает сравнительно невысокими эксплуатационными характеристиками, но тем не менее может успешно применяться для питания многих радиотехнических устройств (см., например, схемы на рис. 17, 20, 39 и др.).

На рис. 102 приведена схема еще одного стабилизатора напряжения, но с использованием ОУ. Такие усилители имеют очень большой коэффициент усиления (несколько сотен и даже тысяч) и два входа — инвертирующий (на графическом изображении ОУ обозначают кружком) и неинвертирующий. Сигналы, поданные на эти входы, суммируются с учетом их знака и многократно

усиливаются. Характерная особенность стабилизатора напряжения с применением ОУ заключается в том, что в нем выходное напряжение сравнивается с образцовым (опорным) и таким образом поддерживается на заданном) уровне,

Рассмотрим по схеме более подробно работу такого стабилизатора напряжения. Выходное напряжение с делителя R2R3 подается на инвертирующий вход ОУ, а образцовое напряжение, снимаемое со стабилитрона VD1, — на неинвертирующий вход. При небольшом изменении напряжения на выходе стабилизатора на инвертирующем входе (вывод 9) появляется сигнал рассогласования, который многократно усиливается и изменяет напряжение на регулирующем транзисторе VT1 таким образом, что напряжение на выходе стабилизатора практически не изменяется. Этот процесс длится всего несколько микросекунд.

Напряжение на выходе стабилизатора можно определить по упрощенной формуле

Изменяя в небольших пределах сопротивления резисторов R2 и R3, можно изменять выходное напряжение стабилизатора. При этом, как видно из формулы, выходное напряжение не может быть меньше напряжения стабилизации стабилитрона.

Резистор R4 ограничивает выходной ток ОУ, конденсатор С1 предотвращает возбуждение устройства. Коэффициент стабилизации этого источника напряжения составляет 200. 400, а выходное сопротивление — несколько миллиом. Максимальный выходной ток равен произведению предельно допустимого выходного тока ОУ на коэффициент h21э транзистора VT1 и для данной схемы составляет 500. 600 мА. Если же для питания устройства требуется больший ток, чем может обеспечить один регулирующий транзистор, следует применять составной транзистор (например, типов КТ972, КТ825, КТ827). При отсутствии составного транзистора в одном корпусе его можно выполнить из двух обычных транзисторов одной или разных структур.

На рис. 103,а показана схема составного транзистора, образованного транзисторами одной структуры (n-р-n), на рис. 103, б образованного транзисторами разных структур (VT1 — р-n-р, VT2 -n-р-n). Резистор R1 обеспечивает нормальную работу стабилизатора при высоких температурах окружающей среды и малых токах нагрузки. Ток, протекающий через этот резистор, должен быть значительно больше обратного тока коллекторного перехода транзистора VT1 при наибольшей рабочей температуре. Если ток через регулирующий транзистор VT1 превышает 70. 100 мА, транзистор

следует устанавливать на радиатор. Площадь радиатора можно приближенно определить по формуле (для температуры окружающего воздуха около 20°С)

где S — площадь поверхности охлаждения радиатора, см^2; Uкэ -напряжение между коллектором и эмиттером регулирующего транзистора, В; Iнагр — ток нагрузки стабилизатора, А.

На рис. 104 приведена схема еще одного варианта стабилизатора напряжения. В нем применена интегральная микросхема К142ЕН1Б, представляющая собой стабилизатор напряжения. Вот ее основные параметры: диапазон изменения входного напряжения 9. 20 В;

Читайте так же:
Регулируемый стабилизатор тока транзисторе

пределы установки выходного напряжения 3. 12 В; максимальный ток нагрузки 0,15 А; минимальное падение напряжения на регули-

рующем элементе 4 В. В микросхеме предусмотрена защита от перегрузок по току и коротких замыкании.

Для указанных на схеме рис. 104 транзисторов и номиналов резисторов выходное напряжение составляет 5 В, а ток срабатывания защитного устройства около 1 А (при уменьшении тока через нагрузку устройство автоматически принимает исходное состояние). При необходимости ток ограничения Ioгр может быть изменен подбором резистора R3. Его сопротивление рассчитывают по формуле

где R3 — в омах;Ioгp — в амперах.

Выходное напряжение устанавливают подбором резистора R6.

В микросхеме предусмотрен вход выключения стабилизатора. При подаче на вывод 9 через резистор R5 напряжения 2. 3 В напряжение на выходе становится равным нулю, Удобно управлять включением и выключением стабилизатора с помощью цифровых микросхем, имеющих питание 5 В.

В настоящее время промышленность выпускает интегральные стабилизаторы с фиксированным напряжением, содержащие в одном

корпусе регулирующий транзистор и узлы управления им (микросхемы серий К142, КР142). Схема стабилизатора напряжением 5 В представлена на рис. 105. Микросхема КР142ЕН5А содержит узел защиты от перегрузки по току. Максимальное значение тока для этой микросхемы составляет около 3 А.

На микросхеме К142ЕНЗА можно выполнить стабилизированный источник напряжения, регулируемого в пределах от 3 до 30 В при токе нагрузки до 1 А. Схема представлена на рис. 106. Выходное напряжение регулируется резистором R4 и может быть вычислено по формуле Uвыx=2,6(R4+R5)/R5, В. Суммарное сопротивление резисторов R4 и R5 не должно превышать 20 кОм. Ток ограничения lorp устанавливают резистором R3, сопротивление которого может быть вычислено по приближенной формуле R3=0,6/Ioгp, где сопротивление берут в омах, а ток — в амперах. В стабилизаторе предусмотрена возможность отключения внешним сигналом. Для этого на резистор R1 подают положительное напряжение, которое должно обеспечивать ток через резистор R1 не более ЗмА. В стабилизаторе

предусмотрена также тепловая защита (при нагревании корпуса микросхемы до определенной температуры выходное напряжение уменьшается до нуля). Температура отключения определяется сопротивлением резистора R2.

Микросхема DA1 должна быть установлена на радиаторе, обеспечивающем требуемую рассеиваемую мощность. Она не должна превышать 6 Вт. Для обеспечения этого условия во всем диапазоне регулируемого выходного напряжения следует применять ступенчатое регулирование выходного напряжения.

Если требуется увеличить допустимый выходной ток, можно применить усилитель тока на транзисторе.

Фрагмент схемы приведен на рис. 107. Резистор R1 подбирают исходя из требуемого тока ограничения (он выполняет ту же функцию, что и резистор R3 в предыдущей схеме). Ток нагрузки может достигать 5. 10 А.

Иногда возникает необходимость получить двуполярное напряжение от однополярного источника (например, для питания операционных усилителей). В этом случае можно воспользоваться приставкой, схема которой представлена на рис. 108.

Устройство представляет собой усилитель постоянного тока, выполненный на операционном усилителе DA1 и транзисторах VT1 VT2 включенных по схеме эмиттерного повторителя. Работает устройство следующим образом. Задающее напряжение подается на неинвертирующий вход ОУ (вывод 3) с делителя R1-R3 через резистор R4. На инвертирующий вход ОУ (вывод 2) подается сигнал с выхода эмиттерного повторителя (сигнал отрицательной обратной связи). Допустим, что по какой-либо причине напряжение на выходе эмиттерного повторителя стало больше, чем напряжение на движке переменного резистора R2. Тогда на входах ОУ будет действовать результирующий отрицательный сигнал. Напряжение на выходе ОУ при этом уменьшится, что вызовет приоткрывание транзистора VT2 и призакрывание транзистора VT1. В результате напряжение на выходе снизится. Поскольку коэффициент усиления ОУ составляет несколько десятков тысяч (для данного типа более 30 000) то в процессе работы напряжения на входах ОУ будут равны, следовательно, напряжение на выходе эмиттерного повторителя полностью определяется положением движка переменного резистора Операционный усилитель К140УД7 можно заменить на К140УД8_ К140УД14 К140УД20, К140УД9. Выбор транзисторов VT1, VI2 определяется максимальным током, который необходимо получить от источника. Заметим, что через эти транзисторы протекает ток, равный разности токов нагрузок, подключенных к положительному и отрицательному выходам. Исходя из этого следует выбирать и радиаторы для транзисторов. Кроме того, ток через транзисторы не может быть больше максимального выходного тока ОУ, умноженного на статический коэффициент передачи тока транзисторов h21э. В данном случае он может достигать 200 мА. При необходимости получения больших токов следует применять составные транзисторы.

Операционный усилитель (ОУ). Схемы стабилизации и повышения входного сопротивления ОУ.

Операционный усилитель (ОУ) — унифицированный многокаскадный усилитель постоянного тока, как правило, выполненный в виде интегральной микросхемы. Он успешно применяется как при решении многих технических задач (усиление и преобразование сигналов, стабилизация напряжения и тока и т. п.), так и при выполнении математических операций с сигналами (суммирование, вычитание, дифференцирование, интегрирование и т. д.). На ранних этапах развития вычислительной техники ОУ использовались в аналоговых вычислительных машинах для выполнения математических операций с сигналами. Отсюда и появилось его наименование — операционный (решающий) усилитель.

Читайте так же:
Стабилизатор напряжения с малым током потребления

Основные параметры ОУ должны удовлетворять ряду требований как в отношении электрических характеристик, так и его конструктивного выполнения.

Требования к электрическим характеристикам ОУ связаны в основном с необходимостью обеспечить: высокий коэффициент усиления по напряжению; большое входное и малое выходное сопротивления; линейность передаточной характеристики; высокую верхнюю граничную частоту пропускания.

Требования к конструктивному исполнению ОУ сводятся к следующим особенностям его конструкции: наличию двух автономных входов (1) и (2) с общей точкой, соединенной с массой усилителя; выполнению одного из входов (1) с неинвертирующим (совпадение по фазе), а другого (2) с инвертирующим (в противофазе) включением по отношению к выходному сигналу.

Заметим, что в условном обозначении ОУ (рис. 11.15, а) показаны лишь шесть основных зажимов. Обычно ОУ снабжают большим числом зажимов (до 15), необходимых для подключения дополнительных элементов контроля, балансировки, коррекции частотной характеристики и других функций.

Рис. 11.15. Условное обозначение операционного усилителя (а) и его функциональная схема (б)

Рис. 11.16. Схема дифференциального усилителя с ООС, реализуемой посредством резистора

Основными показателями качества работы ОУ являются: коэффициент усиления по напряжению KU, достигающий у лучших образцов значения до 10 6 ; входное сопротивление Rвх (до 10 9 Ом); верхняя граничная частота, достигающая у лучших образцов даже значения 50 МГц.

Благодаря высоким характеристикам и широкой доступности, обеспеченной серийным выпуском, ОУ нашли исключительно широкое применение в электронике и системах автоматики. На основе ОУ получены высококачественные линейные усилители, источники опорных напряжения и тока, генераторы импульсов, схемы сравнения (компараторы) и т. п.

Основу ОУ составляет дифференциальный усилитель, воздействуя на каналы прямой и обратной связи которого добиваются реализации задач, стоящих перед ОУ. Типовая функциональная схема ОУ приведена на рис. 11.15, б.

Как видно, ОУ можно представить в общем виде состоящим из трех каскадов: входного дифференциального усилителя (ДУ), имеющего симметричный вход и обеспечивающего высокую стабильность, малое напряжение шумов и т. п.; промежуточного усилителя напряжения (УН), выполненного, как правило, также в виде дифференциального усилителя с большим коэффициентом усиления; выходного эмиттерного повторителя (ЭП), выполненного по двухтактной схеме и обеспечивающего малое выходное сопротивление ОУ.

Схемы разделения сигналов дифференциального усилителя (рис. 11.15) позволяют проводить анализ процессов в ОУ путем раздельного учета каждой из составляющих входного и выходного сигналов.

В операционных усилителях для связи дифференциального, промежуточного и, как правило, выходного усилителей используют несимметричный выход (например, только коллекторный зажим б транзистора VT2 на рис. 11.16, б). Однако при этом ухудшается работа всего ОУ, так как стабилизирующие свойства дифференциального каскада проявляются только относительно симметричного входа (между точками а и б). Для решения указанной проблемы в дифференциальном усилителе применяют стабилизирующую ООС по токам эмиттеров обоих транзисторов, реализуемую резистором RЭ (рис. 11.16).

Для количественной оценки стабилизирующих свойств дифференциального усилителя служит коэффициент ослабления синфазной составляющей, численно равный

где (KU)пф и (KU)сф — коэффициенты усиления каскада по напряжению для противофазного и синфазного сигналов соответственно. Коэффициент Kос с удобно представлять в децибелах:

Как видно, дифференциальные усилители с лучшими стабилизирующими свойствами (меньшим дрейфом нуля) имеют большие значения Kос.с. С увеличением сопротивления резистора RЭ (рис. 11.16) действие ООС усиливается, а следовательно, уменьшается значение (KU)сф при неизменной величине (KU)пф. В результате коэффициент Kос с возрастает.

Таким образом, усиление действия ООС, ведущее к улучшению стабилизирующих свойств дифференциального усилителя, оценивают более высоким значением коэффициента ослабления синфазной составляющей Kос с.

Схемы стабилизации и повышения входного сопротивления ОУ. Как указывалось выше, улучшение стабильности работы дифференциального усилителя обеспечивается увеличением сопротивления резистора RЭ в схеме ООС (см. рис. 11.16).

Однако это вызывает пропорциональное снижение эмиттерных токов транзисторов VT1 и VТ2, что уменьшает максимальное выходное напряжение усилителя. Поэтому в схеме дифференциального усилителя вместо резистора RЭ применяют источник стабильного тока, имеющий бесконечно большое дифференциальное сопротивление. Кроме того, для стабилизации напряжения питания каскада используют специальный стабилизатор напряжения. Практическая схема дифференциального усилителя со стабилизаторами тока и напряжения приведена на рис. 11.17. Как видно, источник стабильного тока выполнен на транзисторе VT3 с диодным смещением (посредством диода VD), способствующим термостабилизации транзистора. Стабилизатор напряжения включает транзистор VT4, с помощью которого стабилизируется входное напряжение каскада (мостовой схемы).

Рис. 11.17. Схема дифференциального каскада со стабилизаторами тока и напряжения

Повышение входного сопротивления дифференциального усилителя достигается снижением базовых токов покоя транзисторов VT1 и VT2 (см. рис. 11.17) до ничтожно малых величин (единицы наноампер). Однако это ухудшает работу дифференциального усилителя из-за уменьшения его динамического диапазона, под которым понимают выраженное в децибелах отношение максимального сигнала к минимальному. Для предотвращения этого фактора в качестве приборов VT1 и VT2 применяют супер-бета транзисторы, отличающиеся чрезвычайно большими коэффициентами усиления по току (тысячи единиц) за счет использования в них предельно тонкой базы. Однако применение таких транзисторов заметно усложняет задачу стабилизации дифференциального усилителя. Поэтому в ряде случаев повышение входного сопротивления ОУ достигается использованием в его входном канале полевых транзисторов.

Читайте так же:
Схема импульсного стабилизатора напряжения тока

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Калейдоскоп схем на операционных усилителях

Мы предоставляем читателю право самостоятельно проанализировать работу приведенных ниже схем.

4.09. Линейные схемы

Схема с инвертированием по выбору. Схемы, представленные на рис. 4.14, позволяют инвертировать входной сигнал или пропускать его без инвертирования в зависимости от положения переключателя. Положение переключателя определяет также коэффициент усиления по напряжению — он может быть равен или +1, или -1.

Упражнение 4.5. Покажите, что схемы, представленные на рис. 4.14, работают так, как сказано выше.

Повторитель со следящей связью. В транзисторных усилителях на величину входного импеданса могут влиять цепи смешения; такая же проблема возникает при использовании ОУ, особенно с межкаскадными связями по переменному току, когда ко входу обязательно должен быть подключен заземленный резистор. Схема со следящей связью, представленная на рис. 4.15. позволяет решить эту проблему. Как и в транзисторной схеме со следящей связью (разд. 2.17), конденсатор емкостью 0,1 мкФ вместе с верхним резистором с сопротивлением 1 МОм образует для входных сигналов высокоомную входную цепь. Низкочастотный спад усиления для этой схемы начинается на частоте 10 Гц, на более низких частотах на спаде усиления начинает сказываться влияние обоих конденсаторов и ослабление оценивается величиной 12дБ/октава. Замечание: у вас может появиться искушение уменьшить величину входного конденсатора связи, так как его нагрузка привязана к высокому импедансу. Однако, это может привести к появлению пика в частотной характеристике, как в характеристике схемы активного фильтра (см. разд. 5.06).

Идеальный преобразователь тока в напряжение. Напомним, что простейшим преобразователь тока в напряжение — это всего — навсего резистор. Однако у него есть недостаток, который состоит в том, что для источника входного сигнала входное сопротивление такого преобразователя не равно нулю; этот недостаток может оказаться очень серьезным, если устройство, обеспечивающее входной ток, имеет очень малый выходной рабочий диапазон или не может обеспечить постоянство тока при изменении выходного напряжения. Примером может служить диодный фотоэлемент (фотодиод), или солнечная батарея. Небольшой светочувствительностью обладают даже обычные диоды в прозрачных корпусах, которые используются почти в любой схеме (известно немало историй о загадочном поведении схем которое в конце концов было объяснено этим эффектом). На рис. 4.16 представлена хорошая схема для преобразования тока в напряжение, в которой потенциал входа поддерживается строго равным потенциалу земли. Инвертирующий вход имеет квазинуль потенциала; это очень хорошо, так как фотодиод может создавать потенциал, равный всего нескольким десятым долям вольта. Представленная схема обеспечивает преобразование тока в напряжение в отношении 1 В на 1 мкА входного тока. (В ОУ с биполярными плоскостными транзисторами на входах иногда между неинвертирующим входом и землей включают резистор: его функции мы определим, когда будем обсуждать недостатки операционных усилителей).

Безусловно, этот преобразователь тока в напряжение можно с таким же успехом использовать с элементами, через которые протекает ток при наличии положительного напряжения возбуждения, например Uкк. В такую схему часто включают фотоумножители и фототранзисторы (оба элемента под воздействием света начинают потреблять ток от положительно источника питания (рис. 4.17).

Упражнение 4.4. Используя ОУ типа 411 и измерительный прибор на 1 мА (полный размах шкалы), разработайте схему «идеального» измерителя тока (т.е. с нулевым входным импедансом) с полным размахом шкалы, рассчитанным на 5 мА. Разработайте схему так, чтобы входной сигнал никогда не превышал ±150% полного размаха шкалы. Предположите, что диапазон выходного сигнала для ОУ типа 411 составляет ±13 В (источники питания ±15 В), а внутреннее сопротивление измерительного прибора равно 500 Ом.

Дифференциальный усилитель. На рис. 4.18 представлена схема дифференциального усилителя, коэффициент усиления которого равен R2/R1. В этой схеме, как и в схеме источника тока с согласованными резисторами, для получения высокого значения КОСС необходимо обеспечить точное согласование резисторов. Для этого лучше всего при первом удобном случае создать запас резисторов с сопротивлением 100 кОм и точностью 0,01%. Коэффициент усиления дифференциального усилителя будет равен единице, но этот недостаток легко устранить за счет последующих усилительных каскадов (с несимметричным входом). Более подробно дифференциальные усилители рассмотрены в гл. 7.

Читайте так же:
Стабилизатор частоты вращения двигателя постоянного тока

Суммирующий усилитель. Схема, показанная на рис. 4.19, представляет собой один из вариантов инвертирующего усилителя. Точка X имеет потенциальный нуль, поэтому входной ток равен U1/R + U2/R + U3/R, отсюда Uвых = — (Ul + U2 + U3). Обратите внимание, что входные сигналы могут быть как положительными, так и отрицательными. Кроме того, входные резисторы не обязательно должны быть одинаковыми; если они неодинаковы, то получим взвешенную сумму. Например, схема может иметь 4 входа, на каждом из которых напряжение равно + 1 В или О В; входы представляют двоичные значения: 1, 2, 4 и 8. Если использовать резисторы с сопротивлением 10, 5, 2,5 и 1,25 кОм. то снимаемое с выхода напряжение (в вольтах) будет пропорционально двоичному числу, которое задано на входе. Эту схему нетрудно расширить до нескольких цифр. Описанный метод представления чисел лежит в основе цифро-аналогового преобразования, правда, на входе преобразователя обычно используют другую схему (резистивную сетку R — 2R).

Упражнение 4.5. Постройте схему цифро-аналогового преобразователя на две десятичные цифры, подобрав соответствующим образом входные резисторы для суммирующего усилителя. Цифровой вход должен представлять собой две цифры; каждый вход должен состоять из четырех шин, соответствующих значениям 1, 2, 4 и 8, из которых формируется десятичная цифра. Потенциал входной шины может быть равен потенциалу земли или +1 В, т. е. восемь входных шин соответствуют числам 1, 2, 4. 8. 10. 20, 40 и 80. В связи с тем, что диапазон выходного сигнала ограничен значениями ±13 В, нужно сделать так, чтобы выходное напряжение (в вольтах) составляло одну десятую часть числа на входе.

Предусилитель для электромагнитного звукоснимателя. Предусилитель для звукоснимателя по стандарту RIAA представляет собой пример усилителя с частотной характеристикой особого вида. При записи звука на пластинку амплитудная характеристика имеет почти плоский вид, с другой стороны, электромагнитный звукосниматель реагирует на скорость движения иглы в бороздке диска, следовательно, усилитель воспроизведения должен иметь подъем частотной характеристики на низких частотах. Такую характеристику обеспечивает схема, показанная на рис. 4.20. График представляет собой частотную характеристику усилителя воспроизведения (построенную относительно значения коэффициента усиления 0 дБ при частоте 1 кГц), точки перегиба графика отмечены в единицах времени. Заземленный конденсатор емкостью 47 мкФ уменьшает коэффициент усиления по постоянному току до единицы, в противном случае он был бы равен 1000; как упоминалось выше, это делается для того, чтобы устранить усиление входного сдвига по постоянному току Использованная в примере интегральная схема типа LM833 представляет собой сдвоенный ОУ, предназначенный для использования в звуковом диапазоне («золотой» для данного примера является схема типа LM1028, которая в 13 дБ раз тише ив 10 дБ раз дороже, чем схема типа 833!).

Рис. 4.20. Операционный усилитель в схеме предусилителя звуковых частот для электрофонов с электромагнитной головкой и коррекцией частотной характеристики по стандарту RIAA.

Усилитель мощности (бустер). Для получения больших выходных токов к выходу ОУ можно подключить мощный транзисторный повторитель (рис. 4.21). В примере использован неинвертирующий усилитель, но повторитель можно подключать к любом операционному усилителю. Обратите внимание, что сигнал обратной связи снимается с эмиттера; следовательно, обратная связь определяет нужное выходное напряжение независимо от падения напряжения Uбэ. При использовании этой схемы возникает обычная проблема, связанная с тем, что повторитель может только отдавать ток (для n-p-n — транзистора). Как и в случае транзисторного повторителя, проблема решается применением двухтактного варианта схемы (рис. 4.22). В дальнейшем мы покажем, что ограниченная скорость, с которой может изменяться напряжение на выходе (скорость нарастания), накладывает серьезные ограничения на быстродействие усилителя в переходной области и вызывает переходные искажения. Если усилитель будет использоваться в системе с малым быстродействием, то смешать двухтактную пару в состоянии покоя не нужно, так как переходные искажения будут в основном устранены за счет обратной связи. Промышленность выпускает несколько типов интегральных схем усилителей мощности для операционных усилителей, например LT1010, ОРА633 и 3553. Эти двухтактные усилители с единичным коэффициентом усиления работают на частотах до 100 МГц и выше, их выходной ток равен 200 мА. Их смело можно охватывать петлей обратной связи.

Источник питания. Операционный усилитель может работать как усилитель в стабилизаторе напряжения с обратной связью (рис. 4.23). Операционный усилитель сравнивает выходное напряжение с эталонным напряжением стабилитрона и соответственно управляет составным транзистором Дарлингтона, выполняющим функции «проходного транзистора». Эта схема обеспечивает стабилизированное напряжение 10 В при протекании через нагрузку тока до 1 А. Некоторые замечания по этой схеме:
1. Делитель, с которого снимается выходное напряжение, может быть выполнен в виде потенциометра, тогда выходное напряжение можно будет регулировать.
2. Для ослабления пульсаций на зенеровском диоде (стабилитроне) резистор с сопротивлением 10 кОм полезно заменить источником тока. Другой вариант состоит в том, чтобы смещение зенеровского диода задавать от выходного сигнала; в этом случае вы с пользой применяете стабилизатор, который построили. Замечание: если вы захотите воспользоваться этим трюком, то внимательно проанализируйте вашу схему и убедитесь в том, что она запускается, когда на нее подается питание.
3. Схема, подобная рассмотренной, может быть повреждена при возникновении короткого замыкания на выходе. Это связано с тем, что при этом ОУ стремится обеспечить протекание через составной транзистор очень большого тока. В стабилизированном источнике питания всегда следует предусматривать схему для ограничения «аварийного» тока (более подробно вы познакомитесь с этим вопросом в разд. 6.05).
4. Промышленность выпускает разнообразные стабилизаторы напряжения в интегральном исполнении, начиная от освященных временем интегральных схем типа 723 до недавно появившихся 3-выводных регулируемых стабилизаторов с внутренними средствами ограничения тока и ограничения по перегреву (см. табл. 6.8-6.10). Эти устройства, в которых имеются встроенные температурно-компенсированный источник эталонного напряжения и проходной транзистор, Так удобны в работе, что операционные усилители общего назначения теперь почти никогда не используются в стабилизатоpax напряжения. Исключением являются случаи, когда стабильное напряжение нужно сформировать внутри схемы. уже имеющей стабилизированный источник напряжения.

Читайте так же:
Параметрический стабилизатор расчет тока

В гл. 6 мы подробно поговорим о стабилизаторах напряжения и источниках питания и рассмотрим специальные интегральные схемы, предназначенные для использования в качестве стабилизаторов напряжения.

42.Стабилизаторы напряжения сн на основе оу. Сн как элемент схемотехники. Однополярные сн с опорными стабилитронами.

В упрощенном виде схема линейного стабилизатора напряжения приведена на Рис. 5.1.

Схема состоит из операционного усилителя в неинвертирующем включении с отрицательной обратной связью по напряжению, источника

опорного напряжения Vref и регулирующего транзистора VT1, включенного последовательно с нагрузкой. Выходное напряжение Vout контролируется с

помощью цепи отрицательной обратной связи, выполненной на резистивном делителе R1R2. ОУ играет роль усилителя ошибки, в качестве которой здесь выступает разность между опорным напряжением Vref задаваемым источником опорного напряжения (ИОН), и выходным напряжением делителя R1R2.

Схема работает следующим образом. Пусть по тем или иным причинам

(например, из-за уменьшения сопротивления нагрузки или входного нерегулируемого напряжения) выходное напряжение стабилизатора КОит уменьшилось. При этом на входе ОУ появится ошибка AV> 0. Выходное напряжение усилителя возрастет, что приведет к увеличению тока базы, а, следовательно, и тока эмиттера регулирующего транзистора до значения, при котором выходное напряжение возрастет практически до первоначального уровня. В случае идеального операционного усилителя установившееся значение ошибки, совпадающее с дифференциальным входным напряжением ОУ, близко к нулю. Отсюда следует, что

Питание операционного усилителя осуществляется от входного нерегулируемого однополярного напряжения, в данном случае положительного (при регулирующем транзисторе р-п-р-тнпа. все напряжения в схеме должны быть отрицательными). Это накладывает ограничения на допустимый диапазон входных и выходных сигналов, которые в этих условиях должны быть только положительными.

Для схем источников питания такое ограничение не играет роли, поэтому от использования напряжения другой полярности для питания ОУ можно отказаться. Еще одно преимущество подобной схемы состоит в том, что напряжение питания операционного усилителя можно удвоить, не опасаясь превысить его предельно допустимые параметры. Таким образом, стандартные операционные усилители можно использовать в схемах стабилизаторов с входным напряжением до 30 В. Хотя операционный усилитель питается от нестабилизированного входного напряжения KIN, благодаря глубокой отрицательной обратной связи влияние этого фактора на стабильность выходного напряжения невелико.

Для случаев, когда требуется два симметричных относительно общей точки стабилизированных напряжения (например, ±15 В для питания операционных усилителей) выпускаются ИМС, содержащие два стабилизатора— на положительное и отрицательное напряжение, например NE5554 (отечественный аналог — КР142ЕН6). Упрощенная схема внутренней структуры такого стабилизатора приведена на Рис. 5.4а, а типовая схема его включения — на Рис. 5Л6.

Канал стабилизации отрицательного напряжения является независимым.

Дифференциальный усилитель ДУ2 управляет регулирующим транзистором VT2

так, чтобы выполнялось соотношение

Усилитель ДУ1 с помощью транзистора VT1 стремится поддержать потенциал точки соединения резисторов R2 и R4 нулевым, что при выполнении условия R2 = R4 обеспечивает равенство положительного и отрицательного выходных напряжений. Подключая дополнительные резисторы между соответствующими выходами микросхемы, можно независимо подстроить баланс выходных напряжений и их величину.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector