Простой стабилизатор тока для зарядки аккумулятора
Простое универсальное автоматическое зарядное устройство
Я постарался вставить в заголовок этой статьи все плюсы данной схемы, которою мы будем рассматривать и естественно у меня это не совсем получилось. Так что давайте теперь рассмотрим все достоинства по порядку.
Главным достоинством зарядного устройство является то, что оно полностью автоматическое. Схема контролирует и стабилизирует нужный ток зарядки аккумулятора, контролирует напряжение аккумуляторной батареи и как оно достигнет нужного уровня – убавит ток до нуля.
Какие аккумуляторные батареи можно заряжать?
Практически все: литий-ионные, никель-кадмиевые, свинцовые и другие. Масштабы применения ограничиваются только током заряда и напряжением.
Для всех бытовых нужд этого будет достаточно. К примеру, если у вас сломался встроенный контроллер заряда, то можно его заменить этой схемой. Аккумуляторные шуруповерты, пылесосы, фонари и другие устройства возможно заряжать этим автоматическим зарядным устройством, даже автомобильные и мотоциклетные батареи.
Где ещё можно применить схему?
Помимо зарядного устройства можно применить данную схему как контроллер зарядки для альтернативных источников энергии, таких как солнечная батарея.
Также схему можно использовать как регулируемый источник питания для лабораторных целей с защитой короткого замыкания.
Основные достоинства:
- — Простота: схема содержит всего 4 довольно распространённых компонента.
- — Полная автономность: контроль тока и напряжения.
- — Микросхемы LM317 имеют встроенную защиту от короткого замыкания и перегрева.
- — Небольшие габариты конечного устройства.
- — Большой диапазон рабочего напряжения 1,2-37 В.
Недостатки:
- — Ток зарядки до 1,5 А. Это скорей всего не недостаток, а характеристика, но я определю данный параметр сюда.
- — При токе больше 0,5 А требует установки на радиатор. Также следует учитывать разницу между входным и выходным напряжением. Чем эта разница будет больше, тем сильнее будут греться микросхемы.
Схема автоматического зарядного устройства
На схеме не показан источник питания, а только блок регулировки. Источником питания может служить трансформатор с выпрямительным мостом, блок питания от ноутбука (19 В), блок питания от телефона (5 В). Все зависит от того какие цели вы преследуете.
Схему можно поделать на две части, каждая из них функционирует отдельно. На первой LM317 собран стабилизатор тока. Резистор для стабилизации рассчитывается просто: «1,25 / 1 = 1,25 Ом», где 1,25 – константа которая всегда одна для всех и «1» — это нужный вам ток стабилизации. Рассчитываем, затем выбираем ближайший из линейки резистор. Чем выше ток, тем больше мощность резистора нужно брать. Для тока от 1 А – минимум 5 Вт.
Вторая половина — это стабилизатор напряжения. Тут все просто, переменным резистором выставляете напряжение заряженного аккумулятора. К примеру, у автомобильных батарей оно где-то равно 14,2-14,4. Для настройки подключаем на вход нагрузочный резистор 1 кОм и измеряем мультиметром напряжение. Выставляем подстрочным резистором нужное напряжение и все. Как только батарея зарядится и напряжение достигнет выставленного – микросхема уменьшит ток до нуля, и зарядка прекратиться.
Я лично использовал такое устройство для зарядки литий-ионных аккумуляторов. Ни для кого не секрет, что их нужно заряжать правильно и если допустить ошибку, то они могут даже взорваться. Это ЗУ справляется со всеми задачами.
Чтобы контролировать наличие заряда можно воспользоваться схемой, описанной в этой статье — Индикатор наличия тока.
Есть ещё схема включения этой микросхемы в одно: и стабилизация тока и напряжения. Но в таком варианте наблюдается не совсем линейная работа, но в некоторых случаях может и сгодиться.
Информативное видео, только не на русском, но формулы расчета понять можно.
Схема зарядного устройства для автомобильного аккумулятора – от простого к сложному
- Схема простого зарядного устройства для автомобильного аккумулятора
- Классика — резисторный зарядник
- Гасящий конденсатор
- Схема самодельного зарядного устройства для аккумулятора на тринисторе
- Схема импульсного зарядного устройства для автомобильного аккумулятора
При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.
Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.
- Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
- Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
- Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
- Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
- Экстремально низкая температура ускоряет саморазряд
- Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
- Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
- И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.
Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой аккумулятора: то есть, зарядным устройством.
Во вкладке четыре проверенных и надежных схем зарядных устройств для автомобиля от простой до самой сложной. Выбирай любую и она будет работать.
Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.
Любая схема автомобильного зарядного устройства состоит из следующих компонентов:
- Блок питания.
- Стабилизатор тока.
- Регулятор силы тока заряда. Может быть ручным или автоматическим.
- Индикатор уровня тока и (или) напряжения заряда.
- Опционально – контроль заряда с автоматическим отключением.
Любой зарядник, от самого простого, до интеллектуального автомата – состоит из перечисленных элементов или их комбинации.
Схема простого зарядного устройства для автомобильного аккумулятора
Формула нормального заряда простая, как 5 копеек – базовая емкость батареи, деленная на 10. Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт).
Простая принципиальная электрическая схема зарядного устройства для автомобиля состоит из трех компонентов: блок питания, регулятор, индикатор.
Классика — резисторный зарядник
Блок питания изготавливается из двух обмоточного «транса» и диодной сборки. Выходное напряжение подбирается вторичной обмоткой. Выпрямитель – диодный мост, стабилизатор в этой схеме не применяется.
Ток заряда регулируется реостатом.
Проволочный реостат необходим для противостояния главной проблеме такой схемы – избыточная мощность выделяется в виде тепла. Причем происходит это очень интенсивно.
Разумеется, КПД такого прибора стремится к нулю, а ресурс его компонентов очень низкий (особенно реостата). Тем не менее, схема существует, и она вполне работоспособна. Для аварийной зарядки, если под рукой нет готового оборудования, собрать ее можно буквально «на коленке». Есть и ограничения – ток более 5 ампер является предельным для подобной схемы. Стало быть, заряжать можно АКБ емкостью не более 45 Ач.
Зарядное устройство своими руками, подробности, схемы — видео
Гасящий конденсатор
Принцип работы изображен на схеме.
Благодаря реактивному сопротивлению конденсатора, включенного в цепь первичной обмотки, можно регулировать зарядный ток. Реализация состоит из тех же трех компонентов – блок питания, регулятор, индикатор (при необходимости). Схему можно настроить под заряд одного типа АКБ, и тогда индикатор будет не нужен.
Если добавить еще один элемент – автоматический контроль заряда, а также собрать коммутатор из целой батареи конденсаторов – получится профессиональный зарядник, остающийся простым в изготовлении.
Схема контроля заряда и автоматического отключения, в комментариях не нуждается. Технология отработана, один из вариантов вы видите на общей схеме. Порог срабатывания устанавливается переменным резистором R4. Когда собственное напряжение на клеммах аккумуляторной батареи достигает настроенного уровня, реле К2 отключает нагрузку. В качестве индикатора выступает амперметр, который перестает показывать ток заряда.
Изюминка зарядного устройства – конденсаторная батарея. Особенность схем с гасящим конденсатором – добавляя или уменьшая емкость (просто подключая или убирая дополнительные элементы) вы можете регулировать выходной ток. Подобрав 4 конденсатора для токов 1А, 2А, 4А и 8А, и коммутируя их обычными выключателями в различных комбинациях, вы можете регулировать ток заряда от 1 до 15 А с шагом в 1 А.
При этом никакого паразитного нагрева (кроме естественного, выделяющегося на диодах моста), коэффициент полезного действия зарядника высокий.
Схема самодельного зарядного устройства для аккумулятора на тринисторе
Если вы не боитесь держать в руках паяльник, можно собрать автомобильный аксессуар с плавной регулировкой тока заряда, но без недостатков, присущих резисторной классике.
В качестве регулятора применяется не рассеиватель тепла в виде мощного реостата, а электронный ключ на тиристоре. Вся силовая нагрузка проходит через этот полупроводник. Данная схема рассчитана на ток до 10 А, то есть позволяет без перегрузок заряжать АКБ до 90 Ач.
Регулируя резистором R5 степень открытия перехода на транзисторе VT1, вы обеспечиваете плавное и очень точное управление тринистором VS1.
Схема надежная, легко собирается и настраивается. Но есть одно условие, которое мешает занести подобный зарядник в перечень удачных конструкций. Мощность трансформатора должна обеспечивать троекратный запас по току заряда.
То есть, для верхнего предела в 10 А, трансформатор должен выдерживать длительную нагрузку 450-500 Вт. Практически реализованная схема будет громоздкой и тяжелой. Впрочем, если зарядное устройство стационарно устанавливается в помещении – это не проблема.
Схема импульсного зарядного устройства для автомобильного аккумулятора
Все недостатки перечисленных выше решений, можно поменять на один – сложность сборки. Такова сущность импульсных зарядников. Эти схемы имеют завидную мощность, мало греются, располагают высоким КПД. К тому же, компактные размеры и малый вес, позволяют просто возить их с собой в бардачке автомобиля.
Схемотехника понятна любому радиолюбителю, имеющему понятие, что такое ШИМ генератор. Он собран на популярном (и совершенно недефицитном) контроллере IR2153. В данной схеме реализован классический полу мостовой инвертор.
При имеющихся конденсаторах выходная мощность составляет 200 Вт. Это немало, но нагрузку можно увеличить вдвое, заменив конденсаторы на емкости по 470 мкФ. Тогда можно будет заряжать аккумуляторы емкостью до 200 Ач.
Собранная плата получилась компактной, умещается в коробочку 150*40*50 мм. Принудительного охлаждения не требуется, но вентиляционные отверстия надо предусмотреть. Если вы увеличиваете мощность до 400 Вт, силовые ключи VT1 и VT2 следует установить на радиаторы. Их надо вынести за пределы корпуса.
В качестве донора может выступить блок питания от системника ПК.
Поэтому просто воспользуемся элементной базой. Отлично подойдет трансформатор, дроссель и диодная сборка (Шоттки) в качестве выпрямителя. Все остальное: транзисторы, конденсаторы и прочая мелочь – обычно в наличии у радиолюбителя по всяким коробочкам-ящичкам. Так что зарядник получается условно бесплатным.
На видео показано и рассказано как собрать самостоятельно собрать импульсное зарядное устройство для авто.
Стоимость же заводского импульсника на 300-500 Вт – не менее 50 долларов (в эквиваленте).
Вывод:
Собирайте и пользуйтесь. Хотя разумнее поддерживать вашу аккумуляторную батарею «в тонусе».
Регулятор тока на транзисторе для зарядного устройства
Разделы сайта
DirectAdvert NEWS
Друзья сайта
Рекламный блок
Рекламный блок
Рекламный блок
Статистика
Ни для кого не ново, если скажу, что у любого автомобилиста в гараже должно быть зарядное устройство для аккумуляторной батареи. Конечно, его можно купить в магазине, но, столкнувшись с этим вопросом, пришел к выводу, заведомо не очень хорошее устройство по приемлемой цене брать не хочется. Встречаются такие, у которых ток заряда регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая зарядный ток, при этом прибор контроля тока в принципе отсутствует. Это наверно самый дешевый вариант зарядника заводского исполнения, ну а толковый девайс стоит не так уж и дешево, цена прямо-таки кусается, поэтому решил найти схему в интернете, и собрать ее самому. Критерии выбора были такие:
– простая схема, без лишних наворотов;
– доступность радиодеталей;
– плавная регулировка зарядного тока от 1 до 10 ампер;
– желательно чтобы это была схема зарядно-тренировочного устройства;
– не сложная наладка;
– стабильность работы (по отзывам тех, кто уже делал данную схему).
Поискав в интернете, наткнулся на промышленную схему зарядного устройства с регулирующими тиристорами.
Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры в качестве ключей (VD11, VD12), узел контроля заряда. Несколько упростив эту конструкцию, получим более простую схему:
На этой схеме нет узла контроля заряда, а остальное – почти то же самое: транс, мост, генератор, один тиристор, измерительные головки и предохранитель. Обратите внимание, что в схеме стоит тиристор КУ202, он немного слабоват, поэтому чтобы не допустить пробоя импульсами большого тока его необходимо установить на радиатор. Трансформатор – ватт на 150, а можно использовать ТС-180 от старого лампового телевизора.
И еще одно устройство, не содержащее дефицитных деталей, с током заряда до 10 ампер. Оно представляет собой простой тиристорный регулятор мощности с фазоимпульсным управлением.
Узел управления тиристором собран на двух транзисторах. Время, за которое конденсатор С1 будет заряжаться до переключения транзистора, выставляется переменным резистором R7, которым, собственно, и выставляется величина зарядного тока аккумулятора. Диод VD1 служит для защиты управляющей цепи тиристора от обратного напряжения. Тиристор, также как и в предыдущих схемах, ставится на хороший радиатор, или на небольшой с охлаждающим вентилятором. Печатная плата узла управления выглядит следующим образом:
Схема не плохая, но в ней есть некоторые недостатки:
– колебания напряжения питания приводят к колебанию зарядного тока;
– нет защиты от короткого замыкания кроме предохранителя;
– устройство дает помехи в сеть (лечится с помощью LC-фильтра).
Это импульсное устройство может заряжать и восстанавливать практически любые типы аккумуляторов. Время заряда зависит от состояния батареи и колеблется в пределах 4 – 6 часов. За счет импульсного зарядного тока происходит десульфатация пластин аккумулятора. Смотрим схему ниже.
В этой схеме генератор собран на микросхеме, что обеспечивает более стабильную его работу. Вместо NE555 можно использовать российский аналог – таймер 1006ВИ1. Если кому не нравится КРЕН142 по питанию таймера, так ее можно заменить обычным параметрическим стабилизатором, т.е. резистором и стабилитроном с нужным напряжением стабилизации, а резистор R5 уменьшить до 200 Ом. Транзистор VT1 – на радиатор в обязательном порядке, греется сильно. В схеме применен трансформатор со вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диодов типа Д242. Для лучшего охлаждения радиатора транзистора VT1 можно применить вентилятор от компьютерного блока питания или охлаждения системного блока.
В результате неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, и он выходит из строя.
Известен способ восстановления таких батарей при заряде их «ассимметричным» током. При этом соотношение зарядного и разрядного тока выбрано 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.
На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.
Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.
В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.
Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22. 25 В.
Измерительный прибор РА1 подойдет со шкалой 0. 5 А (0. 3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.
В схеме применяется транзистор с большим коэффициентом усиления (1000. 18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости (см. рис. 2). Последняя буква в обозначении транзистора может быть любой.
Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.
Резисторы применены такие R1 типа С2-23, R2 — ППБЕ-15, R3 — С5-16MB, R4 — ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.
обратного напряжения.
Конечно, лучше брать гибкий медный многожильный, ну а сечение нужно выбрать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим табличку:
Если вас интересует схемотехника импульсных зарядно-восстановительных устройств с применением таймера 1006ВИ1 в задающем генераторе – прочтите эту статью:
Иногда собирая самодельное зарядное устройство для автомобильного аккумулятора, мы не задумываемся о такой важной функции, как ограничитель тока. Зачем нужен токовый ограничитель ? Это своего рода регулятор, который позволяет уменьшить или увеличить ток заряда аккумулятора, при этом напряжение зарядки остается прежним.
Такой функцией снабжены все дорогие зарядные устройства, но на рынке немало зарядников, которые задают ток заряда автоматическим образом, но это не есть хорошо, поскольку человеческие мозги лучше любого контроллера и выставить нужны ток заряда аккумулятора вручную более желательно.
Схема довольно проста, силовой частью является транзистор KT837, им управляет транзистор средней мощности КТ814. Максимальный отдаваемый ток такого ограничителя составляет до 2-х Ампер, но разумеется это не предел для схемы. Только заменой резистора 1Ом и силового транзистора КТ837 можно снять до 7-10 Ампер.
Для этого резистор нужно будет заменить на 0,1-0,33Ом с мощностью не менее 20 Ватт, можно и на 10, но перегрев идет очень сильный. Транзистор можно заменить на КТ818ГМ или импортный аналог. Транзистор обязательно устанавливают на теплоотвод, возможно будет нужда в принудительном охлаждении.
Резистор R2 для регулировки выходного тока желательно использовать на 1 ватт.
Стабилитрон можно заменить на импортный, желательно с мощностью в 1 ватт. Устройством можно дополнить любой самодельный блок питания, который не имеет ограничителя по току.
JLCPCB — это крупнейшая фабрика PCB прототипов в Китае. Для более чем 600000 заказчиков по всему миру мы делаем свыше 15000 онлайн заказов на прототипы и малые партии печатных плат каждый день! |
Anything in here will be replaced on browsers that support the canvas element
Три схемы простых регуляторов тока
В сети очень много схем регуляторов напряжения для самых разных целей, а вот с регуляторами тока дела обстоят иначе. И я хочу немного восполнить этот пробел, и представить вам три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так, как они универсальны и могут быть использованы во многих самодельных конструкциях.
Регуляторы тока по идее не многим отличается от регуляторов напряжения. Прошу не путать регуляторы тока со стабилизаторами тока, в отличии от первых они поддерживают стабильный выходной ток не зависимо от напряжения на входе и выходной нагрузки.
Стабилизатор тока – неотемлимая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого на нагрузку. В этой статье мы рассмотрим пару стабилизаторов и один регулятор общего применения.
Во всех трех вариантах в качестве датчика тока использованы шунты, по сути низкоомные резисторы. Для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта. Нужное значение тока выставляют вручную, как правило вращением переменного резистора. Все три схемы работают в линейном режиме, а значит силовой транзистор при больших нагрузках будет сильно нагреваться.
Первая схема отличается максимальной простотой и доступностью компонентов. Всего два транзистора, один из них управляющий, второй является силовым, по которому и протекает основной ток.
Датчик тока представляет из себя низкоомный проволочный резистор. При подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение. Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт транзистор. Резистор R1, задает напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии. Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1 грубо говоря затухаеться или замыкается на массу питания через открытый переход маломощного транзистора, этим силовой транзистор будет закрываться, следовательно, ток протекающий по нему уменьшается вплоть до полного нуля.
Резистор R1 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытия управляющего транзистора, а следовательно, управлять и силовым транзистором ограничивая ток протекающий по нему.
Вторая схема построена на базе операционного усилителя. Ее неоднократно использовал в зарядных устройствах для автомобильного аккумулятора. В отличии от первого варианта – эта схема является стабилизатором тока.
Как и в первой схеме тут также имеется датчик тока (шунт), операционный усилитель фиксирует падение напряжения на этом шунте, все по уже знакомой нам схеме. Операционный усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение. Операционный усилитель в свою очередь постарается сбалансировать напряжение на входах путем изменения выходного напряжения.
Выход операционного усилителя управляет мощным полевым транзистором. То есть принцип работы мало чем отличается от первой схемы, за исключением того, что тут имеется источник опорного напряжения выполненный на стабилитроне.
Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться.
Последняя схема построена на базе популярной интегральной микросхеме стабилизатора LM317. Это линейный стабилизатор напряжения, но имеется возможность использовать микросхему в качестве стабилизатора тока.
Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.
Максимально допустимый ток для микросхемы LM317 1,5 ампера, увеличить его можно дополнительным силовым транзистором. В этом случае микросхема уже будет в качестве управляющей, поэтому нагреваться не будет, взамен будет нагреваться транзистор и от этого никуда не денешься.
Зарядное устройство из стабилизатора напряжения своими руками
Давно известно, что внутреннее оборудование автомобиля не заряжает полностью аккумуляторную батарею. Для подзарядки используется специальное устройство. Его выбор требует определённых знаний.
Автолюбителям, разбирающимся в радиотехнике, будет интересно познакомиться с простым стабилизатором напряжения, который с успехом используется в качестве зарядного устройства.
Выбираем зарядное устройство
Для качественной подзарядки аккумуляторной батареи требуются стабильные напряжение и ток.
Типовое зарядное устройство включает:
• узел питания. Предназначается для получения постоянного напряжения. С этой целью используется понижающий трансформатор или импульсное устройство с выпрямителем;
• узел стабилизации тока. Предназначается для поддержания с высокой точностью заданного значения тока зарядки.
По рекомендации изготовителей, зарядка производится током 1/10 величины ёмкости аккумуляторной батареи. К примеру, зарядный ток 6 А при ёмкости аккумулятора 60 А/ч;
• узел стабилизации напряжения. Предназначается для формирования стабилизированного и регулируемого напряжения.
Такое напряжение необходимо на заключительном этапе зарядки.
Рекомендуется начинать зарядку током до 50% ёмкости батареи, а затем устанавливать напряжение 14,5 В. Заряжается автомобильный аккумулятор до 14,4 В.
Популярностью у автолюбителей, прежде всего, пользуются несложные схемы стабилизации напряжения.
Выбираем схему стабилизатора напряжения
В зарубежной технической литературе опубликована простая схема стабилизации напряжения. Её использование для подзарядки аккумуляторов, показало высокую эффективность и надёжность.
Устройство собрано на полевом (MOSFET) транзисторе Q1, который выполняет функции регулирующего силового элемента. Схема рассчитана на работу с полупроводником IRLZ44N в ключевом режиме.
Устройство, в зависимости от установленного радиатора полевого транзистора, коммутирует токи до 10 А.
В качестве регулируемого стабилитрона U1 используется микросхема TL431.
Совместно с переменным резистором RV1 настраивается выходное напряжение схемы. Отечественным аналогом микросхемы считается стабилитрон КР142ЕН19А.
Электролиты C1 C2 C3 на 50 В являются сглаживающими элементами. Они обеспечивают устойчивую работу схемы.
На вход схемы подаётся напряжение от 6 до 50 В, а на выходе формируется требуемое напряжение от 3 до 27 В.
Минимальное напряжение 3 В определяется управляющим напряжением полевого транзистора.
Рассеиваемая мощность устройства не более 50 Вт.
Для отвода тепла полевой транзистор устанавливается на радиатор с площадью эквивалентной 0,02 м2.
Для улучшения теплоотвода применяется термопаста или резиновая подложка.
Соединительные провода подключаются к устройству с помощью двухполюсных колодок.
Печатная плата имеет следующий вид:
Собранное устройство, получается такого вида:
В общем, из недорогих и доступных радиодеталей собрано малогабаритное устройство с большими возможностями.
Кстати, некоторые детали взяты с компьютерного блока питания.
Желаем удачной сборки.
Мне пришлось совсем недавно самостоятельно соорудить зарядное устройство для автомобильного аккумулятора с током 3 – 4 ампер. Конечно мудрить, что то не желания, не времени не было и в первую очередь вспомнилась мне схема стабилизатора зарядного тока. По этой схеме очень просто и надежно сделать зарядное устройство.
Вот сама схема для зарядного устройства:
Установлена была старая микросхема (К553УД2), она хоть и старая, просто время не было опробовать новые, да и к тому же она оказалась под рукой. Шунт от старого тестера прекрасно подошел на место резистора R3. Резистор можно конечно и самим изготовить из нихрома, но при этом сечение должно быть достаточным, чтобы выдержать через себя ток и не накалиться до предела.
Устанавливаем шунт параллельно амперметру, подбираем его учитывая размеры измерительной головки. Собственно и устанавливаем мы его на саму клемму головки.
Таким образом выглядит печатная плата стабилизатора тока зарядного устройства:
Трансформатор может быть применен любой от 85 вт и выше. Обмотка вторичная должна быть на напряжение 15 вольт, а сечение провода должно начинаться от 1,8 мм (диаметр по меди). На место выпрямительного моста подошел 26МВ120А. Может он большеват для такого типа конструкции, зато устанавливать его очень просто, прикрутил и надел клеммы. Можно и установить любой диодный мост. Для него главная задача – выдержать соответствующий ток.
Корпус можно сделать из чего угодно, у меня хорошо подошел корпус от старой магнитолы. Для хорошего пропуска воздуха на верхней крышке просверлил дырки. Вместо передней панели был установлен лист текстолита. Шунт, тот что на амперметре надо отрегулировать опираясь на показания тестового амперметра.
На заднюю стенку радиатора крепим транзистор.
Ну вот мы собрали стабилизатор тока, теперь надо проверить его, закоротив между собой (+) и (-). Регулятор должен обеспечить плавную регулировку во всём диапазоне зарядного тока. Если нужно, можно воспользоваться подбором резистора R1.
Важно помнить что все напряжение поступает на регулировочный транзистор и он сильно нагревается! Как только проверили, размыкаем перемычку!
Все готово и можно теперь воспользоваться таким зарядным устройством, которое во всем диапазоне зарядки стабильно будет поддерживать ток. Необходимо следить за показанием напряжения на аккумуляторе по вольтметру, так как такое зарядное устройство не имеет автоматического отключения, после окончания зарядки.
Приобретая новый стабилизатор взамен устаревшего или поломанного агрегата, владельцы задумываются, как поступить с предшественником? Кроме очевидных вариантов, таких как: сдать на металлолом или отправить на свалку, существуют и другие возможности применения старого стабилизатора.
Зарядное устройство
Зарядное устройство для автомобильной аккумуляторной батареи – первое, что можно сделать из стабилизатора напряжения. Для этого нужно намотать на тороидальный сердечник диодный мост и обмотку из толстого провода из расчёта по витку на Вольт, то есть для устройства на 12 В понадобится 12 витков.
Источник бесперебойного питания
ИБП для персонального компьютера – ещё один вариант того, что можно сделать из стабилизатора от телевизора. Неоспоримым преимуществом такого использования является защита жёсткого диска компьютера, который может слететь при сильных скачках напряжения в электрической сети без использования стабилизатора.
Однако здесь существует нюанс: стабилизатор от телевизора является индуктивным, что в момент подключения монитора приведёт к скачку напряжения к нижней отметке. Вследствие упавшего напряжения компьютер начнёт перезагружаться и образуется замкнутый круг. Однако эту проблему можно решить, если не подключать системный блок с монитором напрямую к стабилизатору, а объединить их третьим заземляющим контактом. В качестве такого контакта отлично подойдёт обыкновенный тройник евро-стандарта, уже обеспеченный заземлением.
Понижающий трансформатор
Используя автотрансформатор от стабилизатора напряжения типа «Украина», можно переделать его в трансформатор понижающего типа на 12 – 14 Вольт.
Чтобы узнать, подойдёт ли первичная обмотка, нужно её концы ненадолго включить в сеть через амперметр переменного тока, настроенный на максимальный предел измерения. Если в течение нескольких секунд ток не превысит 50-100 миллиампер, тогда перематывать первичную обмотку не придётся.
Далее следует намотать любым проводом (в изоляции) десять витков, включить трансформатор в сеть и замерить напряжение на концах этой обмотки. Таким образом можно рассчитать число витков, требуемое для получения необходимого напряжения и прибавить к результату около десяти процентов в расчёте на компенсацию падения напряжения под нагрузкой.
Полученное количество витков наматывается обмоточным проводом с сечением от 1 до 1,5 кв. мм (для получения тока 3-5 Ампер).
Прочие варианты
Можно рассмотреть и другие варианты того, что сделать из старого стабилизатора напряжения своими руками:
- силовой трансформатор;
- блок питания для усилителя – путём намотки на первичную обмотку тороидального сердечника вторичной. Намотка делается проводом двухмиллиметрового диаметра, всего необходимо примерно семьдесят – восемьдесят витков;
- выходной трансформатор гитарного усилителя – подойдёт любой старый стабилизатор ферромагнитного типа, работающий по принципу введения магнитопровода в насыщение. Выдача на выходе нелинейных искажений, неприемлемая для работы с качественными звуковыми системами, здесь будет оправдана, поскольку в усилителях для электрогитары гармонические составляющие увеличивают специально посредством использования каскадов-исказителей.
Для перемотки трансформаторов от стабилизатора необходим расчёт толщины провода и количества витков – это нужно для получения требуемого напряжения. Решить этот вопрос самостоятельно поможет программа «расчёт тороидального трансформатора».
Старые стабилизаторы напряжения являются по сути трансформаторами с коэффициентом трансформации, равном единице. Они отлично подойдут для защиты любого ценного электроприбора (телевизор, усилитель, персональный компьютер) от экстремальных перепадов напряжения в электрической сети.