Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулируемый стабилизатор тока для зарядного устройства 1

Регулируемый стабилизатор тока 16В/7А (140УД1, КУ202)

При зарядке автомобильных аккумуляторных батарей рекомендуется поддерживать средний зарядный ток на постоянном уровне.

Для этого нужна схема стабилизатора тока, которая будет поддерживать нужные параметры. Обычно в стабилизаторах тока в качестве регулирующего элемента используют транзистор, но в процессе работы на нем рассеивается большая мощность, и в связи с этим приходится применять громоздкие теплоотводы. КПД таких устройств весьма мал. Ниже описано подобное устройство с более высоким КПД.

Основные технические характеристики

Максимальный ток нагрузки, А. 7;

Максимальное напряжение на нагрузке, В. 16;

Коэффициент стабилизации по току нагрузки, не менее КПД, %, не менее. 70;

Принципиальная схема

Принципиальная схема устройства показана на рис. 1.

Рис. 1. Принципиальная схема стабилизатора тока на тиристоре КУ202.

На транзисторе VT2 собран генератор пилообразного напряжения. Через резистор R4 на базу транзистора VT2 подано открывающее напряжение (диаграмма А), а через резистор R2 с двуполупериодного выпрямителя на диодах VD1-VD4 поступает закрывающее пульсирующее напряжение (Б).

Суммарное напряжение на базе транзистора VT2 показано штриховой линией Б’. Диод VD11 ограничивает амплитуду закрывающего напряжения. Сопротивление резисторов R2 и R4 выбрано таким, что транзистор большую часть времени закрыт. Конденсатор С3 заряжается через резистор R5.

Но в момент приближения сетевого напряжения к нулю транзистор VT2 открывается, разряжая конденсатор С3. На коллекторе транзистора формируется напряжение, близкое по форме к пилообразному (диаграмма В).

Через резистор R6 оно поступает на один из входов дифференциального усилителя на транзисторах VT4, VT5, а на другой подается напряжение (Г) с выхода ОУ DA1, которое зависит от положения движка резистора R15.

Как только значения напряжения на базе транзисторов VT4 и VT5 сравняются, транзистор VT4 откроется. Вслед за ним откроется транзистор VT3 и сформирует импульс тока (Д), открывающий тринистор VS1.

С этого момента полупериода на нагрузку будет подано выпрямленное напряжение с обмотки III трансформатора Т1 (диаграмма Е). Чем больше напряжение на базе транзистора VT5, тем позже будут возникать импульсы, открывающие тринистор, и тем меньше будет средний ток через нагрузку.

Функцию стабилизации тока выполняет узел на ОУ DA1. Датчиком тока служит резистор R11, напряжение, снимаемое с этого резистора, пропорционально току нагрузки. Через резистор R13 оно подведено к неинвертирующему входу ОУ.

Если по какой-либо причине ток через нагрузку увеличился, то увеличивается и напряжение на неинвертирующем входе ОУ. Это приводит к соответствующему увеличению напряжения на базе транзистора VT5 и увеличению угла открывания тринистора VS1 — ток через нагрузку уменьшается.

Читайте так же:
Как стабилизатор тока повышает напряжение

Таким образом, отрицательная обратная связь по току нагрузки поддерживает нагрузочный ток на заданном уровне. Конденсаторы С5, С7 сглаживают пульсации напряжения на выходе.

Резисторы R124 R16 обеспечивают подачу небольшого отрицательного напряжения на инвертирующий вход ОУ в нижнем по схеме положении движка резистора R15.

Это позволяет регулировать ток нагрузки практически от нуля. Конденсатор С6 повышает устойчивость работы ОУ. Элементы устройства питают от двух стабилизаторов (VD9, VT1 и VD12, R3).

Детали

В устройстве ОУ К140УД1Б можно заменить на К140УД5, К140УД6, К140УД7, К153УД2 (с соответствующей цепью коррекции); транзистор КТ801Б — на любой из серий КТ603, КТ608, КТ801, КТ807, КТ815; КТ315В — на КТ312, КТ315, КТ316, КТ201; КТ814Б — на КТ814, КТ816.

Диоды VD5. VD8 — Д305; их можно заменить на любые из серий Д242. Д248, но в этом случае возрастет рассеиваемая на каждом диоде мощность и размеры теплоотводов придется увеличить. Амперметр РА1 — М5-2 с током полного отклонения стрелки 10 А.

Трансформатор Т1 выполнен на ленточном магнитопроводс ШЛ25х32. Обмотка I содержит 1100 витков провода ПЭВ-2-0,57; обмотка II — 160 витков провода ПЭВ-2-0,21 с отводом от середины; обмотка III — 120 витков провода ПЭВ-2-1,95.

Диоды VD5. VD8 установлены на теплоотводах. Тринистор VS1 установлен на теп-лоотводе площадью не менее 100 см2.

Наладка

Для налаживания устройства к его выходу подключают проволочный резистор сопротивлением 1. 2 Ом и мощностью не менее 100 Вт (можно использовать них-ромовую проволоку диаметром 0,5. 1 мм).

Движок переменного резистора R15 устанавливают в верхнее по схеме положение и подборкой резистора R14 устанавливают ток через нагрузку 7 А. При вращении ручки переменного резистора ток должен плавно уменьшаться до нуля.

Рис. 1. Диаграммы работы в контрольных точках.

Регулируемый стабилизатор тока 16В/7А (140УД1, КУ202)

При зарядке автомобильных аккумуляторных батарей рекомендуется поддерживать средний зарядный ток на постоянном уровне. Для этого нужна , которая будет поддерживать нужные параметры. Обычно в стабилизаторах тока в качестве регулирующего элемента используют транзистор, но в процессе работы на нем рассеивается большая мощность, и в связи с этим приходится применять громоздкие теплоотводы. КПД таких устройств весьма мал. Ниже описано подобное устройство с более высоким КПД. Принципиальная схема устройства показана на рис. 3.9.

Основные технические характеристики:

Максимальный ток нагрузки, А. 7;

Максимальное напряжение на нагрузке, В. 16;

Коэффициент стабилизации по току нагрузки, не менее КПД, %, не менее. 70;

Описание работы:

На транзисторе VT2 собран генератор пилообразного напряжения. Через резистор R4 на базу транзистора VT2 подано открывающее напряжение (диаграмма А), а через резистор R2 с двуполупериодного выпрямителя на диодах VD1-VD4 поступает закрывающее пульсирующее напряжение (Б). Суммарное напряжение на базе транзистора VT2 показано штриховой линией Б’. Диод VD11 ограничивает амплитуду закрывающего напряжения. Сопротивление резисторов R2 и R4 выбрано таким, что транзистор большую часть времени закрыт. Конденсатор С3 заряжается через резистор R5. Но в момент приближения сетевого напряжения к нулю транзистор VT2 открывается, разряжая конденсатор С3. На коллекторе транзистора формируется напряжение, близкое по форме к пилообразному (диаграмма В). Через резистор R6 оно поступает на один из входов дифференциального усилителя на транзисторах VT4, VT5, а на другой подается напряжение (Г) с выхода ОУ DA1, которое зависит от положения движка резистора R15.

Читайте так же:
Регулируемый стабилизатор тока транзисторе

Как только значения напряжения на базе транзисторов VT4 и VT5 сравняются, транзистор VT4 откроется. Вслед за ним откроется транзистор VT3 и сформирует импульс тока (Д), открывающий тринистор VS1. С этого момента полупериода на нагрузку будет подано выпрямленное напряжение с обмотки III трансформатора Т1 (диаграмма Е). Чем больше напряжение на базе транзистора VT5, тем позже будут возникать импульсы, открывающие тринистор, и тем меньше будет средний ток через нагрузку.

Функцию стабилизации тока выполняет узел на ОУ DA1. Датчиком тока служит резистор R11, напряжение, снимаемое с этого резистора, пропорционально току нагрузки. Через резистор R13 оно подведено к неинвертирующему входу ОУ.

Если по какой-либо причине ток через нагрузку увеличился, то увеличивается и напряжение на неинвертирующем входе ОУ. Это приводит к соответствующему увеличению напряжения на базе транзистора VT5 и увеличению угла открывания тринистора VS1 — ток через нагрузку уменьшается. Таким образом, отрицательная обратная связь по току нагрузки поддерживает нагрузочный ток на заданном уровне. Конденсаторы С5, С7 сглаживают пульсации напряжения на выходе. Резисторы R124 R16 обеспечивают подачу небольшого отрицательного напряжения на инвертирующий вход ОУ в нижнем по схеме положении движка резистора R15. Это позволяет регулировать ток нагрузки практически от нуля. Конденсатор С6 повышает устойчивость работы ОУ. Элементы устройства питают от двух стабилизаторов (VD9, VT1 и VD12, R3).

Детали:

В устройстве ОУ К140УД1Б можно заменить на К140УД5, К140УД6, „ К140УД7, К153УД2 (с соответствующей цепью коррекции); транзистор КТ801Б — на любой из серий КТ603, КТ608, КТ801, КТ807, КТ815; КТ315В — на КТ312, КТ315, КТ316, КТ201; КТ814Б — на КТ814, КТ816. Диоды VD5. VD8 — Д305; их можно заменить на любые из серий Д242. Д248, но в этом случае возрастет рассеиваемая на каждом диоде мощность и размеры теплоотводов придется увеличить. Амперметр РА1 — М5-2 с током полного отклонения стрелки 10 А.

Читайте так же:
Стабилизаторы напряжения тока основные соотношения

Трансформатор Т1 выполнен на ленточном магнитопроводс ШЛ25х32. Обмотка I содержит 1100 витков провода ПЭВ-2-0,57; обмотка II — 160 витков провода ПЭВ-2-0,21 с отводом от середины; обмотка III — 120 витков провода ПЭВ-2-1,95. Диоды VD5. VD8 установлены на теплоотводах. Тринистор VS1 установлен на теп-лоотводе площадью не менее 100 см2.

Наладка:

Для налаживания устройства к его выходу подключают проволочный резистор сопротивлением 1. 2 Ом и мощностью не менее 100 Вт (можно использовать них-ромовую проволоку диаметром 0,5. 1 мм). Движок переменного резистора R15 устанавливают в верхнее по схеме положение и подборкой резистора R14 устанавливают ток через нагрузку 7 А. При вращении ручки переменного резистора ток должен плавно уменьшаться до нуля.

Диаграммы работы в контрольных точках:

Литература:

Источник: Радио №8, 1987 г., стр.56Автор: А. ЕВСЕЕВ, г. Тула

Регулируемый блок питания своими руками

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Схема регулируемого блока питания с защитой от КЗ на LM317

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата регулируемого блока питания на регуляторе напряжения LM317

Читайте так же:
Что значит стабилизатор тока

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

А теперь самое интересное… Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Схема подключения вентилятора к блоку питания

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n
Читайте так же:
Стабилизатор тока схема расчет

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

Регулируемый стабилизатор тока для зарядного устройства 1

Интегральный, регулируемый линейный стабилизатор напряжения LM317 как никогда подходит для проектирования несложных регулируемых источников и блоков питания, для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.

Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.

Технические характеристики стабилизатора LM317:

Обеспечения выходного напряжения от 1,2 до 37 В.
Ток нагрузки до 1,5 A.
Наличие защиты от возможного короткого замыкания.
Надежная защита микросхемы от перегрева.
Погрешность выходного напряжения 0,1%.

Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.

Назначение выводов микросхемы:

Онлайн калькулятор LM317
Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.

Примеры применения стабилизатора LM317 (схемы включения)
Стабилизатор тока
Данный стабилизатор тока можно применить в схемах различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.

В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току от 10 мА до 1,56 A:

Источник питания на 5 Вольт с электронным включением

Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:

Регулируемый стабилизатор напряжения на LM317
Схема включения с регулируемым выходным напряжением

LM317 калькулятор
Для упрощения расчета номинала резистора можно использовать несложный калькулятор, который поможет рассчитать необходимые номиналы не только для LM317, но и для L200, стабилитрона TL431, M5237, 78xx.


Скачать datasheet и калькулятор для LM317

Аналог LM317
К аналогам стабилизатора LM317 можно отнести следующие стабилизаторы:

GL317
SG31
SG317
UC317T
ECG1900
LM31MDT
SP900
КР142ЕН12 (отечественный аналог)
КР1157ЕН1 (отечественный аналог)

голоса
Рейтинг статьи
Ссылка на основную публикацию