Schetchiksg.ru

Счетчик СГ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатор с ограничителем тока

FAQ: Че ставить-то? Стабилизатор напряжения или тока? Мотаем на ус!

Авторство: Shuffle Оригинал статьи: здесь

Каждый раз, читая новые записи в блогах сообщества я сталкиваюсь с одной и той же ошибкой — ставят стабилизатор тока там, где нужен стабилизатор напряжения и наоборот. Постараюсь объяснить на пальцах, не углубляясь в дебри терминов и формул. Особенно будет полезно тем, кто ставит драйвер для мощных светодиодов и питает им множество маломощных. Для вас — отдельный абзац в конце статьи. =)

СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
Исходя из названия — стабилизирует напряжение.
Если написано, что стабилизатор 12В и 3А, то значит стабилизирует именно на напряжение 12В! А вот 3А — это максимальный ток, который может отдать стабилизатор. Максимальный! А не «всегда отдает 3 ампера». То есть от может отдавать и 3 миллиампера, и 1 ампер, и два… Сколько ваша схема кушает, столько и отдает. Но не больше трех.
Собственно это главное.
Описанию видов стабилизаторов напряжения:
Линейные стабилизаторы (те же КРЕН или LM7805/LM7809/LM7812 и тп)

Самый распространенный вид. Они не могут работать на напряжении ниже, чем указанное у него на брюхе. То есть если LM7812 стабилизирует напряжение на 12ти вольтах, то на вход ему подать нужно как минимум примерно на полтора вольта больше. Если будет меньше, то значит и на выходе стабилизатора будет меньше 12ти вольт. Не может он взять недостающие вольты из ниоткуда. Потому и плохая это идея — стабилизировать напряжение в авто 12-вольтовыми КРЕНками. Как только на входе меньше 13.5 вольт, она начинает и на выходе давать меньше 12ти.
Еще один минус линейных стабилизаторов — сильный нагрев при хорошей такой нагрузке. То есть деревенским языком — все что выше тех же 12ти вольт, то превращается в тепло. И чем выше входное напряжение, тем больше тепла. Вплоть до температуры жарки яичницы. Чуть нагрузили ее больше, чем пара мелких светодиодов и все — получили отличный утюг.

Импульсные стабилизаторы — гораздо круче, но и дороже. Обычно для рядового покупателя это уже выглядит как некая платка с детальками.

Бывают трех видов: понижающие, повышающие и всеядные. Самые крутые — всеядные. Им все равно, что на входе напряжение ниже или выше нужного. Он сам автоматом переключается в режим увеличения или уменьшения напряжения и держит заданное на выходе. И если написано, что ему на вход можно от 1 до 30 вольт и на выходе будет стабильно 12, то так оно и будет.
Но дороже. Но круче. Но дороже…
Не хотите утюг из линейного стабилизатора и огромный радиатор охлаждения впридачу — ставьте импульсный.
Какой вывод по стабилизаторам напряжения?
ЗАДАЛИ ЖЕСТКО ВОЛЬТЫ — а ток может плавать как угодно (в определенных пределах конечно)
СТАБИЛИЗАТОР ТОКА
В применении к светодиодам именно их еще называют «светодиодный драйвер». Что тоже будет верно.

Задает ток. Стабильно! Если написано, что на выходе 350мА, то хоть ты тресни — будет именно так. А вот вольты у него на выходе могут меняться в зависимости от требуемого светодиодам напряжения. То есть вы их не регулируете, драйвер сделает все за вас исходя из количества светодиодов.
Если очень просто, то описать могу только так. =)
А вывод?
ЗАДАЛИ ЖЕСТКО ТОК — а напряжение может плавать.
Теперь — к светодиодам. Ведь весь сыр-бор из-за них.

Светодиод питается ТОКОМ. Нет у него параметра НАПРЯЖЕНИЕ. Есть параметр — падение напряжения! То есть сколько на нем теряется.
Если написано на светодиоде 20мА 3.4В, то это значить что ему надо не больше 20 миллиампер. И при этом на нем потеряется 3.4 вольта.
Не для питания нужно 3.4 вольта, а просто на нем «потеряется»!
То есть вы можете питать его хоть от 1000 вольт, только если подадите ему не больше 20мА. Он не сгорит, не перегреется и будет светить как надо, но после него останется уже на 3.4 вольта меньше. Вот и вся наука.
Ограничьте ему ток — и он будет сыт и будет светить долго и счастливо.

Вот берем самый распространенный вариант соединения светодиодов (такой почти во всех лентах используется) — последовательно соединены 3 светодиода и резистор. Питаем от 12 вольт.
Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели (про расчет не пишу, в интернете навалом калькуляторов).
После первого светодиода остается 12-3.4= 8.6 вольт.
Нам пока хватает.
На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта.
И для третьего светодиода тоже хватит.
А после третьего останется 5.2-3.4=1.8 вольта.
И если захотите поставить четвертый, то уже не хватит.
Вот если запитать не от 12В а от 15, то тогда хватит. Но надо учесть, что и резистор тоже надо будет пересчитать. Ну вот собственно и пришли плавно к…
Простейший ограничитель тока — резистор. Их часто ставят на те же ленты и модули. Но есть минусы — чем ниже напряжение, тем меньше будет и ток на светодиоде. И наоборот. Поэтому если у вас в сети напряжение скачет, что кони через барьеры на соревнованиях по конкуру (а в автомобилях обычно так и есть), то сначала стабилизируем напряжение, а потом ограничиваем резистором ток до тех же 20мА. И все. Нам уже плевать на скачки напряжения (стабилизатор напряжения работает), а светодиод сыт и светит на радость всем.
То есть — если ставим резистор в автомобиле, то нужно стабилизировать напряжение.

Читайте так же:
Стабилизаторы напряжения тока назначение принцип действия

Можно и не стабилизировать, если вы расчитаете резистор на максимально-возможное напряжение в сети автомобиля, у вас нормальная бортовая сеть (а не китайско-русский тазопром) и сделаете запас по току хотя бы в 10%.
Ну и к тому же резисторы можно ставить только до определенной величины тока. После некоторого порога резисторы начинают адски греться и приходится их сильно увеличивать в размерах (резисторы 5Вт, 10Вт, 20Вт и тд). Плавно превращаемся в большой утюг.

Есть еще вариант — поставить в качестве ограничителя что-нибудь типа LM317 в режиме токового стабилизатора.

Но и они тоже греются, ибо это тоже линейный регулятор (помните я писал про КРЕН в абзаце о стабилизаторах напряжения?).
И тогда создали…
Импульсный стабилизатор тока (или драйвер).

Он в себе включает сразу все что надо. И почти не греется (только если дико перегрузить или неправильно собрана схема). Поэтому обычно и ставят их для светодиодов мощнее 0.5Вт. Самый греющийся элемент во всей схеме — это сам светодиод. Но ему на роду пока написано — греться. Главное не перегреваться выше определенной температуры. А то если перегреть, то дико начинает деградировать кристалл светодиода и он тускнеет, начинает менять цвет и тупо умирает (привет, китайские лампочки!).
Ну а в заключении — к тому, что постоянно пытаюсь доказать в дискуссиях. И доказываю. Вот только каждому отдельно объяснять одно и то же — язык отвалится. Поэтому попробую еще раз в этой статье.

Постоянно наблюдаю такую картину — задают ток драйвером для мощных светодиодов (скажем — 350мА) и ставят несколько веток светодиодов без ограничительных резисторов и прочего. И ведь люди, то вроде бы и не самые ламеры, а совершают одну и ту же ошибку раз за разом. Рассказываю, почему это плохо и к чему может привести:

Из закона Ома для полной цепи:
Сила тока в неразветвленной цепи равна сумме сил тока на ее параллельных участках.
Многие так и считают — «каждая ветка по 20мА, у меня 20 веток. Драйвер отдает 350мА, значит на каждую ветку придется даже меньше — по 17.5мА. Бинго!»
А вот и не Бинго!, а Жопа ! Почему?

Сила тока в каждой ветке будет равна, если у вас идеальнейшие светодиоды с абсолютно одинаковыми параметрами. Тогда и ток будет во всех ветках одинаков, и никаких ограничителей тока не надо — взяли и поделили общий ток на количество одинаковых веток. Но такое — только в сказках.
Если параметры чуть-чуть отличаются — получили в одной ветке 19мА, в другой 17, в третьей 20…
Общее количество тока так и остается неизменным — 350мА, а вот в ветках творится безумная кака. На взгляд и не определишь, вроде светят одинаково… И вот у вас одна ветка, самая прожорливая, начинает греться сильнее остальных. И жрать больше. И греться еще сильнее. А потом раз — и потухла. И все эти ее миллиамперы разбежались по остальным веткам. И вот еще одна ветка, недавно вроде нормально горевшая берет и тухнет следом. И уже вдвое больший ток уходит на другие ветки, ведь общий ток жестко задан 350мА. Процесс лавинообразный и вот уже пришел кирдык всей этой схеме, потому что все 350мА усосались в оставшиеся светодиоды и никто-никто их не спас… А стояли бы, как полагается, по отдельному стабилизатору (хотя бы банальному резистору) на каждой ветка — работала бы и дальше.

Именно это мы и видим в китайских модулях и кукурузинах, которые горят как спички через неделю/месяц работы. Потому что светодиоды имеют адский разброс, а китайцы на драйверах экономят покруче, чем кто либо еще. Почему не горят фирменные модули и лампы Osram, Philips и тд? Потому что они делают довольно мощную отбраковку светодиодов и от всего дичайшего количества выпущенных светодиодов остается 10-15%, которые по параметрам практически идентичны и из них можно сделать такой простой вид, какой и пытаются сделать многие — один мощный драйвер и много одинаковых цепочек светодиодов без драйверов. Но только вот в условиях «купил светодиоды на рынке и запаял сам» как правило будет им нехорошо. Потому что даже у «некитая» будет разброс. Может повезти и работать долго, а может и нет.

Да и токовый драйвер по-сравнению со стабилизатором напряжения и копеечными резисторами как правило дороже. Ну нафига стрелять в мишень для мелкокалиберной винтовки из танка? Цель-то поразим, вопросов нет. Но вместе с ней еще и воронку оставим. =))

Читайте так же:
Линейный стабилизатор переменного тока

Да и просто — сделать правильно и сделать «смотрите как я сэкономил, а остальные — дураки» — это несколько разные вещи. Даже очень сильно разные. Учитесь делать не как пресловутые китайцы, учитесь делать красиво и правильно. Это сказано давно и не мной. Я лишь попробовал в стотыщпятьсотый раз объяснить прописные истины. Уж звиняйте, если криво объяснял =)

Ну и напоследок тем, кому даже такое изложение было слишком заумным.
Запомните следующее и старайтесь следовать этому (здесь «цепочка» — это один светодиод или несколько ПОСЛЕДОВАТЕЛЬНО-соединенных светодиодов):
1. КАЖДОЙ цепочке — свой ограничитель тока (резистор или драйвер…)
2. Маломощная цепочка до 300мА? Ставим резистор и достаточно.
3. Напряжение нестабильно? Cтавим СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
4. Ток больше 300мА? Ставим на КАЖДУЮ цепочку ДРАЙВЕР (стабилизатор тока) без стабилизатора напряжения.

Вот так будет правильно и самое главное — будет работать долго и светить ярко!
Ну и надеюсь, что все вышенаписанное убережет многих от ошибок и поможет сэкономить средства и нервы.

Ну ладно, рябятке.
Нюансов еще очень много, а я и так уже немаленькую статью-то накатал.
Засим откланиваюсь,
Всегда ваш — ЛедЗлыдень Борисыч.

PS: И да, для злопыхателей. Этот пост конечно же не о правильном подключении светодиодов, а тупо реклама моего личного блога. Вы как всегда правы, а я как всегда корыстен. Ага (шутка) =)))

Простой Регулируемый Стабилизатор-Ограничитель Тока.

Рекомендованные сообщения

Присоединяйтесь к обсуждению

Вы можете опубликовать сообщение сейчас, а зарегистрироваться позже. Если у вас есть аккаунт, войдите в него для написания от своего имени.
Примечание: вашему сообщению потребуется утверждение модератора, прежде чем оно станет доступным.

Сообщения

Похожие публикации

Добрый день, коллеги!
Стоит передо мной задача непростая (для меня, по крайней мере), ибо я больше по механике, а электротехника — только в общих чертах.
Есть у меня маломощный насос (24 VDC, 3.6 л/мин), специальный (может кипяток прокачивать) для моих нужд.
Так вот его расход зависит от величины тока (см. рис). Мне необходимо управлять его расходом. Точнее даже, не управлять, а иметь возможность его работы в трех режимах: номинал (3.6 л/мин, ток 170 мА), средний расход (0,6 л/мин, ток 130 мА) и минимум (0,4 л/мин, ток 110 мА).
Управление будет посредством контроллера (есть стандартные все выходы управления: реле, 0-10В, 4-20 мА).
Вопрос: возможно ли сконструировать что-нибудь, для решения моей задачи. Нужно тупо подавать в трех случаях три разных тока на насос. Ну и иметь возможность подстроить величину тока в каждом случае для корректировки.
ps Можно, наверное, тупо сделать три блока питания с ограничением тока (хотя я и в этом не силен). Но это как то варварски, как мне кажется.
pps Эту задачу я могу решить с помощью механики (поставить регулирующий кран с приводом, который будет ограничивать расход воды). Но приводы слишком медленные.

Как правильно запаять nsi45020 на светодиодной ленте.
я сделал как на моей картинке, это правильно?

Здравствуйте. Пытаюсь сделать стабилизатор тока для нагрева куска нихромовой проволоки.
Схема:

Хочу регулировать ток от 1 до 6 ампер. Блок питания 12В (компьютерный). Собрал. Собственно схема работает. Но не могу поднять ток до 6 ампер. Только 4,7А. Когда резистор R1 был 51 кОм, то максимальный ток не поднимался выше 3,3А. Заменил R1 на 36 кОм. Максимальный ток стал 4,7А. Заменил на 30 кОм, но max ток выше не растет. Компьютерный блок по 12В линии 100% должен тянуть 6А.
1. Что в схеме поменять чтобы до 6А поднять ток? (моё предположение что надо поднять опорное напряжение. Т.е. поставить резистивный делитель на TL431. Но не уверен.)
2. Регулировка какая то грубая получается. Т.е. начинаешь убавлять ток, ничего не меняется, потом резко (в маленьком диапазоне) начинает снижаться. Плавнее малой кровью можно сделать?

Приветствую всех на моем самом любимом форуме!
Хочу поделиться своим изделием.. а заодно спросить совета у знатоков.
Давно хотел поставить себе светодиодную подсветку в салон авто.. и не только в салон но и на габариты и поворотники..
пока руки дошли до салонной подсветки.
И так.. было у меня пару метров светодиодной ленты.. остались от объектов.
нарезал я их по ножницам и получились у меня маленькие полосочки по 3 светодиода.
содрал в своей машине (киа рио) плафон..
и притащил домой..
основу под светодиоды вырезал из ДВП.
шаблон сделал из снимка.. который распечатал на принтере и вырезал из бумаги. потом шаблон приложил к ДВП.
разложил ленты на основу и приклеил на скотч двусторонний (родной)
потом разлочил витую пару и использовал провода для пайки лент.
в итоге получилась очень неплохая подсветка, светит ярче родной.
выкладываю фото отчет.
Вопрос к знатокам такой.. надо ли использовать регулятор тока.
и какой лучше.
завтра установлю в машине.. пришлю фотки..
все провода и ленты закрепил дополнительно термоклеем..

Читайте так же:
Стабилизатор тока для полевого транзистора

3.5В
Ток- 200мА
Старая схема, на которой начали гореть резисторы, прикреплена

Стабилизатор с ограничителем тока

Микросхемы (далее ИМС) линейных стабилизаторов напряжения очень удобны для применения в различных схемотехнических проектах, не требующих высоких КПД и больших мощностей. При использовании правильных схемотехнических решений, они обеспечивают более высокую надёжность (за счёт меньшего числа компонентов, даже с учётом интегральных) и меньший уровень шумов, кроме того такие источники питания проще в проектировании и реализации. Дополнительным плюсом также являтся то, что многие ИМС стабилизаторов обеспечивают встроенную защиту от перенапряжения, от превышения тока и от переполюсовки входного напряжения — всё это позволяет в большинстве случаев обойтись без дополнительных элементов в схеме.

Из недостатков данных решений следует отметить два основных:

  • Низкий КПД — «лишнее» напряжение такие схемы фактически сбрасывают в тепло, что, соответственно, в большинстве случаев требует применения дополнительного охлаждения.
  • Необходимость положительной разницы напряжений между входом и выходом — даже самые лучшие модели линейных стабилизаторов имеют падение напряжения около 0.4В, а большинство перестаёт работать уже при разнице 0.5В.

Несмотря на все недостатки, такие схемы часто вполне уместно использовать в своих проектах. В данной статье пойдёт речь о различных схемотехнических особенностях применения данных микросхем.

Стабилизаторы с фиксированным напряжением

Интегральные линейные стабилизаторы могут иметь фиксированное выходное напряжение, либо же иметь возможность выбора выходного напряжения. Начнём с рассмотрения базовых схем включения большинства фиксированных интегральных стабилиазторов напряжения:

Конденсатор C1 рекомендуется ставить для предотвращения возникновения «генерации на входе», если микросхема стабилизатора находится дальше 10 см от источника напряжения — по сути это просто фильтрующий конденсатор. Мы в своих проектах ставим на вход конденсатор в любом случае. Рекомендуется использовать керамику или тантал, ёмкостью не менее 0.1 мкФ. При выборе номинала ёмкости керамики помните, что при повышении температуры у большинства керамических кондёров сильно падает ёмкость.

Назначение конденсатора C2 различается в зависимости от внутренней схемы стабилизатора. Например в микросхемах серии КР1158ЕН, данный элемент обеспечивает отсутствие возбуждения выходного напряжения. А производитель LM317 отмечает, что выходной конденсатор служит лишь для улучшения переходной характеристики и на стабильность не влияет. Так или иначе, при использовании конденсатора малой ёмкости (1-2 мкФ) на выходе многих линейных стабилизаторов наблюдаются небольшие колебания выходного напряжения с частотой несколько кГц и амплитудой порядка 0.2-0.4 вольт. Увеличение выходного конденсатора до 10 мкФ полностью данные колебания убирает.

Оба конденсатора необходимо размещать как можно ближе к корпусу микросхемы.

Диод Д1 ставить не обязательно, в большинстве типовых схем его не используют, но если вы используете конденсатор C2 или выходные напряжения превышают 25 В, диод Д1 рекомендуется всё-таки оставлять, поэтому я оставил его на схемах. Также, данный диод рекомендуется использовать если нагрузка носит индуктивный характер. Он обеспечивает путь для разрядки C2, а в случае индуктивной нагрузки ограничивает броски тока через стабилизатор.

Стабилизаторы с регулируемым напряжением

В схемах с регулируемым выходным напряжением добавляются дополнительные элементы:

Конденсатор C3 уменьшает пульсации выходного напряжения. Рекомендуемый номинал C3 — от 1 до 10 мкФ, большее значение ёмкости значимых улучшений не даёт.

Диод Д2 нужен при использовании C3 — он обеспечивает его разрядку при выключении питания. При отсутствии C3 достаточно диода Д1.

Резисторы R1 и R2 используются для задания выходного напряжения. Регулируемый стабилизатор стремится поддерживать опорное напряжение (Vref) между выводом подстройки и выходом. Поскольку значение опорного напряжения является постоянным, величина тока, протекающего через делитель R1 и R2 определяется только резистором R2. Величина опорного напряжения может меняться от экземпляра к экземпляру от 1.2 до 1.3 В, и в среднем составляет 1.25 В. Напряжение на выходе фактически является суммой падения напряжения на R1 и Vref, т.о., чем больше будет падение напряжения на R1, тем больше будет напряжения на выходе.

Рекомендуемый номинал резистора R2 240 Ом, но допустимо его варьировать в пределах 100-1000 Ом. Выходное напряжение рассчитывается по следующей формуле:

Согласно спецификации значение Iadj лежит в диапазоне 50-100 мкА, поэтому при малых R1 им можно пренебречь.

Повышение напряжения стабилизации регуляторов с фиксированным выходным напряжением

Выходное напряжение фиксированных линейных регуляторов можно повысить, включив в цепь подстройки стабилитрон:

В этой схеме выходное напряжение повысится на величину напряжения стабилизации Vстаб стабилитрона Д2. Резистор R служит для установки тока через стабилитрон и выбирается исходя из параметров стабилитрона. Для большинства стабилитронов подходит R = 200 Ом.

Если поднять напряжение нужно на небольшую величину (0.5 — 1.5 В) вместо стабилитрона Д2 можно использовать практически любой диод в прямом включении (катод на землю). Тогда выходное напряжение будет увеличено на величину падения напряжения на диоде, а резистор R нужно исключить, потому что колебания тока из вывода подстройки невелики и падение напряжения на диоде будет практически постоянным.

Ограничитель тока на линейном стабилизаторе

На микросхемах линейных стабилизаторов типа LM317 (и аналогичных) удобно собирать схему ограничителя тока, для этого требуется всего один дополнительный резистор.

Выходное напряжение зависит от входного напряжение и падения напряжения на стабилизаторе. В данной схеме регулируемые стабилизаторы стремятся поддерживать на выходе напряжение Vref

Читайте так же:
Крен2а стабилизатор тока схема включения

1.25В, поэтому выходной ток определяется соотношением:

Для ИМС с фиксированным напряжением Vref заменяется на Vном., и ток через резистор получается слишком большим (как если бы микросхемы не было), поэтому применение стабилизаторов с фиксированным напряжением в данной схеме нецелесообразно.

Рассеиваемая резистором мощность вычисляется по формуле:

Данная схема будет работать также на всей серии LM340 и аналогичных ИМС.

Увеличение максимального тока ИМС линейных регуляторов

Есть способ увеличить максимальный ток линейного линейного стабилизатора тока.

В данной схеме R1 определяет напряжение открытия транзистора T1:

Здесь Vоткр. — напряжение открытия T1, а Iстаб.max максимальный ток протекающий через стабилизатор (ток, при котором откроется T1). Рекомендуется выбирать Iстаб.max меньше максимального тока микросхемы по спецификации, чтобы был некоторый запас.

Микросхема поддерживает падение напряжения между выходом и выводом подстройки и в случае превышения тока через R2 уменьшает ток через себя, что вызывает уменьшение падения напряжения на R1 и последующее закрытие транзистора. Таким образом, максимальный выходной ток определяется резистором R2 и опорным напряжением микросхемы:

Следует помнить, что при быстрых бросках тока T1 может не успеть закрыться, что вызовет повреждения элементов, поэтому следует использовать дополнительные компоненты для защиты транзистора (здесь не показаны).

Повысить ток можно и для стабилизатора напряжения, включив его по аналогичной схеме (но без R2), однако следует помнить, что в этом случае схема лишится автоматического ограничения по току и превышение максимального значения повлечёт за собой повреждение элементов.

Стабилизатор с плавным нарастанием выходного напряжения

При включении питания напряжение на конденсаторе C2 начинает возрастать, вместе с ним возрастает и выходное напряжение. PNP транзистор выключается когда выходное напряжение достигает значения, определяемого резисторами R1 и R2 (как в обычной схеме регулируемого стабилизатора). Начальное выходное напряжение складывается из начального напряжения на конденсаторе, падения на база-эммитерном переходе и опорного напряжения микросхемы. Скорость нарастания напряжения можно регулировать изменяя номиналы R3 и C2.

Управляемый стабилизатор напряжения с дискретными уровнями выходного напряжения

На регулируемом стабилизаторе можно собрать простой управляемый стабилизатор напряжения, добавивь несколько резисторов и транзисторов. Данное решение удобно, если требуется собрать простой регулируемый стабилизатор с несколькими фиксированными уровнями напряжения.

Резистор R2 рассчитывается на максимальное требуемое напряжение. Включение транзистора будет добавлять в параллель к проводимости резистора R2 дополнительную проводимость и напряжение на выходе будет снижаться. Не забывайте подтягивать базы транзисторов через высокоомные резисторы к питанию, либо к земле (в зависимости о того закрыт или открыт должен быть транзистор без управляющего сигнала).

Конденсатор C2 в данной схеме допустимо не использовать, так как транзисторы обладают некоторой собственной ёмкостью.

Подключение светодиодов через стабилизатор тока

Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу.

  1. Назначение и принцип работы
  2. Обзор известных моделей
  3. Стабилизатор на LM317
  4. Регулируемый стабилизатор
  5. Как сделать стабилизатор для светодиода своими руками
  6. Какой стабилизатор использовать в авто
  7. Вывод

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, как подключить светодиод от сети 220 вольт). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно здесь.

Читайте так же:
Компенсационный стабилизатор тока схема

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и Rset.

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора Rsens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

Мощность, рассеиваемая на резисторе равна:

Регулируемый стабилизатор

Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:

Как сделать стабилизатор для светодиода своими руками

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Какой стабилизатор использовать в авто

Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты (читайте, как подключить светодиодную ленту в авто). Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора. Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.

Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема светодиодного драйвера.

Вывод

Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой.

голоса
Рейтинг статьи
Ссылка на основную публикацию